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INDICES OF TREES WITH A PRESCRIBED

DIAMETER

Slobodan K. Simić,1 Bo Zhou 2

The index of a graph is is the largest eigenvalue of its adjacency matrix. Let
Tn,d be the class of trees with n vertices and diameter d. For all integers n

and d with 4 ≤ d ≤ n − 3 we identify in Tn,d the tree with the k-th largest

index for all k up to
⌊

d

2

⌋

+ 1 if d ≤ n− 4, or for all k up to
⌊

d

2

⌋

if d = n− 3.

1. INTRODUCTION

Let G = (V (G), E(G)) be a simple graph, and let A be its adjacency matrix.
The characteristic polynomial det(xI −A) of A is called the characteristic polyno-
mial of G, and is denoted by φ(G, x). The eigenvalues of A (i.e. the zeros φ(G, x))
are called the eigenvalues of G. The index of a graph G is the largest eigenvalue
of G, denoted by ρ(G). It has been studied extensively in the literature [1, 3]; see
also [2].

In the class of all trees with n ≥ 6 vertices, M. Hofmeister [7] determined
the trees whose indices are the k–th largest, for k = 1, 2, . . . , 5.

Let Tn,d be the class of trees on n vertices and diameter d, with 2 ≤ d ≤ n−1.
Obviously, if T ∈ Tn,2 then T is a star (= K1,n−1), and if T ∈ Tn,n−1 then T is a
path (= Pn). In addition, if d = 3 or d = n− 2 then (as noted in Section 3) we can
easily order all trees in non-increasing order with respect to the index. So we can
assume further (as mentioned in the abstract) that 4 ≤ d ≤ n − 3.

The main purpose of this paper is to identify the trees in Tn,d having the k-th

largest index, for all k up to
⌊

d

2

⌋

+ 1, or
⌊

d

2

⌋

if d = n − 3.

Remark. The first determination of the graphs in Tn,d with the largest index can be

found in [12] (see also [11]).
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2. BASIC TOOLS

Let G be a graph and u a vertex of G. Then G−u denotes the graph obtained
from G by deleting vertex u and the edges incident to u. A pendant vertex is a
vertex of degree 1; a pendant edge is an edge incident to a pendant vertex. A
bouquet is a non-empty collection of pendant edges attached at the same vertex.

Lemma 1. [1] Let u be a pendant vertex of a graph G and v the neighbour of u.
Then

φ(G, x) = xφ(G − u, x) − φ(G − u − v, x) ,

where φ(G − u − v, x) = 1 if G = P2.

Lemma 2. [3, 8] Let G be a connected non-trivial graph and H a proper spanning
subgraph. Then

φ(H, x) > φ(G, x) for x ≥ ρ(G).

A dot product (or coalescence) of two rooted graphs Gu and Hv (u and v are
their roots, respectively) is the graph (denoted by Gu · Hv) which is obtained by
identifying their roots.

Lemma 3. [10] Let G be a connected non-trivial graph, and H = K1,s (s ≥ 2) a
star. Let c be the central vertex of H, and let v be any other vertex. Let Gu, Hc

and Hv be the graphs whose roots are u (any vertex of G), c and v, respectively.
Then

ρ(Gu · Hc) > ρ(Gu · Hv).

Lemma 4. [3, 8] Let Gk,` be a graph obtained from a connected non-trivial graph
G by adding at some fixed vertex two hanging paths of lengths k and `. If k ≥ ` ≥ 1,

then
ρ(Gk,`) > ρ(Gk+1,`−1).

Recall first that for a connected graph the positive unit eigenvector corre-
sponding to its index is called a principal eigenvector. For a given graph G of order
n, let x = (x1, x2, . . . , xn)T be its principal eigenvector. We next have:

Lemma 5. [3, 11] Let G be a connected graph in which r is a vertex adjacent
to vertex s, but not to vertex t. Let G′ be the graph obtained by rotating edge rs

around r to the non–edge rt (i.e, by removing edge rs and adding edge rt). Also let
x be the principal eigenvector of G. Then the following holds:

if xt ≥ xs then ρ(G′) > ρ(G).
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Lemma 6. [4, 11] Let G be a connected graph, and define r, s, t and G′ as in
Lemma 5. Assume G′ is connected as well. Next, let x and x′ be the principal
eigenvectors of G and G′, respectively. Then the following holds:

if xt ≥ xs then x′
t > x′

s.

To state the following result, we need more definitions. An internal path in
some graph, say v0, v1, . . . , vk−1, vk, is a path joining the vertices v0 and vk so that
both v0 and vk (which need not be distinct) have degree greater than 2, while all
other vertices (i.e. v1, . . . , vk−1) are of degree equal to 2. A double snake Tn is
a tree obtained from a path (on n − 4 vertices) by adding to each of its terminal
vertices two pendant edges.

Lemma 7. [6, 3] Let G′ be a graph obtained from a connected graph G by inserting
a vertex of degree 2 in an edge e. Then the following holds :

(i) If e belongs to an internal path and G 6= Tn, then ρ(G′) < ρ(G); for G = Tn

we have ρ(G′) = ρ(G) = 2.

(ii) If e does not belong to an internal path and G 6= Cn, then ρ(G′) > ρ(G); for
G = Cn we have ρ(G′) = ρ(G) = 2.

3. MAIN RESULTS

Recall first that a tree of diameter three is usually called a double star. It
consists of an edge and two (non-empty) bouquets added to the end-vertices of
this edge. Denote by Dp,q a double star with p, q pendant edges contained in the
bouquets (see Fig. 1). Clearly, Dp,q ∈ Tp+q+2,3 whenever p, q ≥ 1.

Theorem 1. Let Dp,q be a double star with 1 < p ≤ q.
Then

ρ(Dp,q) < ρ(Dp−1,q+1).

Proof. Let s and t be the vertices of Dp,q, of degrees
p + 1 and q + 1, respectively. Note, as already assumed,
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Fig. 1: The graph Dp,q .

p ≤ q. Let x = (x1, x2, . . . , xn)T (n = p+q+2) be the principal eigenvector of Dp,q.
It is now easy to prove (using the eigenvalue equations) that xs ≤ xt. Therefrom,
by making use of Lemma 5, the proof easily follows.

Let Pn,d,i be the tree obtained from
the path Pd+1 by attaching a bouquet
with n−d−1 pendant edges to the ver-
tex i of the path (see Fig. 2). Clearly,
Pn,d,i ∈ Tn,d for any 1 ≤ i ≤ d − 1. In
particular, if i = 1 then Pn,d,1 is called
a palm tree, and denoted by Pn,d.
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Fig. 2: The graph Pn,d,i.
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Remark. Theorem 1 and Lemma 4 enable us to order (by indices) all trees from Tn,3 and
Tn,n−2. Namely, for trees of diameter 3 we have:

(1) ρ(D1,n−3) > ρ(D2,n−4) > · · · > ρ(D
bn−2

2
c,dn−2

2
e
).

For trees of diameter d = n − 2 we have:

(2) ρ(Pn,d,b d

2
c) > ρ(Pn,d,b d

2
c−1

) > · · · > ρ(Pn,d,1).

Recall also, that for d ≤ 2 or d = n− 1 the corresponding sets of trees are singletons, and

thus these cases are not of any interest. From now on, we will assume that 4 ≤ d ≤ n− 3

(and thus n ≥ 7).

A caterpillar is a tree in which the removal of all pendant vertices makes it
a path. If C is a caterpillar, let PC be a path (of C) of maximal length. So, if
C ∈ Tn,d then PC is a path of length d. If u is any non-pendant vertex of PC , then
a bouquet (possibly empty) is attached to u. So any caterpillar of diameter d is
determined by a (d−1)-tuple (n1, n2, . . . , nd−1), where ni is the number of edges in
the i-th bouquet (it is assumed here that, as above, the vertices of PC are labeled
from 0 to d). We denote by Cn,d the set of caterpillars on n vertices with diameter
d.

We will now find a tree in Tn,d \ Cn,d with
the largest index. Below we will prove that
this tree, denoted by Nn,d, is unique. It can
be constructed as follows: take a caterpillar
from Cn−1,d with ni = 0 for all i except i =
⌊

d

2

⌋

(hence ni = n − d − 2), and add to

one pendant vertex from the latter bouquet
a pendant edge (see Fig. 3). Clearly, if d ≥ 4
then the new tree is of diameter d.
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Fig. 3: The graph Nn,d.

Theorem 2. For any tree T ∈ Tn,d \ Cn,d (d ≥ 4)

ρ(T ) ≤ ρ(Nn,d),

with equality if and only if T = Nn,d.

Proof. Let T be any tree from Tn,d\Cn,d, and let PT be the path (of T ) of maximal
length (and hence it has length d). We will next show that for any T 6= Nn,d there
is a tree T ′ from Tn,d \ Cn,d having a larger index.

Assume first that T is a tree having a vertex at distance h ≥ 2 from PT . Let
u be a vertex (of T ) whose distance from PT is maximal. Since it is at least two,
let u, v and w be the first three vertices belonging to the shortest path from u to
PT . Consider now a star induced by the edges incident to v. As in Lemma 3 this
star can be turned to a star with all its edges hanging at w. By the same lemma
the resulting tree T ′ has a larger index. The only situation when this argument
does not give raise to a tree T ′ as required is the case when T ′ is a caterpillar.
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But then all hanging elements of T (with respect to PT ), but one, are bouquets;
the exceptional element is a double star hanging at one of its central vertices, or in
particular, a star hanging at one of its pendant vertices.

Assume next that T contains, besides an exceptional element hanging at
some vertex, say u, a bouquet hanging at some other vertex, say v. We can now
relocate the observed hanging elements in such a way so that the edges which were
previously attached at u are now attached at v, or conversely. But then, one of the
two trees just obtained (depending on xu and xv - see Lemma 5, and Lemma 6 if
necessary) has a greater index than T . Again we find a required tree T ′. The only
situation when this argument does not give raise to a tree T ′ as required is the case
when there are no bouquets in T .

Assume next that T contains just one exceptional element as a hanging ele-
ment (attached at vertex u, of PT ). Let k ≥ 1 be the number of pendant vertices
at distance 2 from PT . Let l ≥ 0 the number of pendant vertices at distance 1 from
PT . Any such tree T can be denoted by Tk,l. Let m = k + l. Observe now the trees
Tm,0 and T1,m−1. They can be obtained by relocating hanging edges of the excep-
tional element of Tk,l, l from one side, or k − 1 from the other side, respectively.
By Lemmas 5 and 6 (as above), we get that ρ(Tk,l) ≤ max{ρ(Tm,0), ρ(T1,m−1)}. So
to finish the proof, it is sufficient to prove that ρ(Tm,0) < ρ(T1,m−1) ≤ ρ(Nn,d) for
m ≥ 2.

Let ∆m(x) = φ(Tm,0, x) − φ(T1,m−1, x). Applying Lemma 1 for these two
graphs (at pendant vertices), we easily get

∆m(x) = x∆m−1(x) − xm−2
(
xφ(Pd+1, x) − φ(P2, x)φ(Pd+1 − u, x)

)
.

Applying Schwenk’s formula at vertex u (see [1], p. 78) we get that φ(Pd+1, x) =
xφ(Pd+1 − u, x)− φ(Pd+1 − u− u1, x)− φ(Pd+1 − u− u2, x), where u1 = u− 1 and
u2 = u + 1. Therefrom, since φ(P2, x) = x2 − 1, we get

∆m(x) = x∆m−1(x) + xm−2
(
xφ(Pd+1 − u − u1, x)

+ xφ(Pd+1 − u − u2, x) − φ(Pd+1 − u, x)
)
.

If we prove that ∆m(x) ≥ 0 for x > 2 we are done. Note first that ∆1(x) = 0. So it is
sufficient to prove that xφ(Pd+1−u−u1, x)+xφ(Pd+1−u−u2, x)−φ(Pd+1−u, x) > 0
for x > 2. For this aim we will only prove that xφ(Pd+1 − u − us, x) − φ(Pd+1 −
u, x) > 0 for x > 2 (Here, s = 1 or 2. If s = 1 set ut = u − 2, otherwise set
ut = u + 2. Note that ut ∈ V (PT ) since d ≥ 4.) Let H = Pd+1 − u. Then
xφ(Pd+1 − u − us, x) − φ(Pd+1 − u, x) is equal to φ(H − usut, x) − φ(H, x), and
this expression is positive for x > 2 (follows by using Lemma 2), and consequently
ρ(Tm,0) < ρ(T1,m−1) for m ≥ 2. Finally, by Lemma 4, we get that ρ(T1,m−1) ≤

ρ(Nn,d). The equality can hold only for u =
⌊

d

2

⌋

(by Lemma 4). Note also that

for Tk,l 6= T1,m−1 we have ρ(Tm,0) ≤ ρ(Tk,l) < ρ(T1,m−1) (by Lemmas 5 and 6). So
the equality statement follows.

This completes the proof. �
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We now focus our attention on caterpillars.

Theorem 3. For any caterpillar C ∈ Cn,d (d ≥ 4) having k ≥ 2 bouquets, there is
a caterpillar C′ ∈ Cn,d having k − 1 bouquets such that ρ(C′) > ρ(C).

Proof. Let C be a caterpillar as stated above, and let t be a vertex of PC with
maximum weight (with respect to x, the principal eigenvector of C) among the
vertices of PC with bouquets attached. Let s be any other vertex of PC with a
bouquet attached. Then, by applying Lemma 5 and, if necessary, Lemma 6, we
can relocate (by a sequence of rotations) all edges from the bouquet at s to the
bouquet at t, to get a caterpillar C′ with a larger index. �

Due to Theorem 3, it seems reasonable to consider further only the cater-
pillars with at most two bouquets. At the moment we will focus our attention on
those caterpillars with exactly two bouquets. Let Mn,d be a caterpillar (from Cn,d)
satisfying the following conditions: it has only two bouquets which are of sizes 1
and k (= n − d − 2); the distance between the roots of these two bouquets is 1;

both bouquets if possible, but the
larger one for sure, are “rooted” in
the center of the tree in question (in
fact, a center of PC) - see Fig. 4. Ac-
cording to [11], this graph is an in-
stance of an alternating caterpillars
(cf. [11), i.e. a caterpillars with pre-
scribed degrees, but with maximal in-
dex.
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Fig. 4. The graph Mn,d.

Theorem 4. For any caterpillar C ∈ Cn,d (d ≥ 4) having exactly two bouquets, we
have ρ(C) ≤ ρ(Mn,d), with equality if and only if C = Mn,d.

Proof. Let C be a caterpillar as mentioned above. Using the same argument as in
the proof of Theorem 3, we can easily get that there exists a caterpillar C′ in the
class under considerations such that one of its bouquets has size 1, while the other
one has size n − d − 2, and that in addition ρ(C) ≤ ρ(C′) holds. The rest of the
proof follows immediately from Theorem 3.8 [11]. �

Consider now the caterpillars (from Cn,d) with just one bouquet. By Lemma
4, they can be completely ordered by their indices. Namely we have:

ρ(Pn,d,1) < ρ(Pn,d,2) < · · · < ρ(Pn,d,b d

2
c).

Theorem 5. For any n and d ≥ 4, ρ(Nn,d) < ρ(Mn,d).

Proof. For short, put T = Nn,d and T ′ = Mn,d. Let u ∈ V (T ) be a pendant
vertex at distance 2 from PT (by u′ we denote its neighbor). Next, let v ∈ V (T ′)
be a pendant vertex belonging to a pendant edge in the bouquet of size 1 (by v′

we denote its neighbour). Then, clearly, T − u = T ′ − v. By Lemma 1, we easily
get φ(T ′, x)−φ(T, x) = φ(T − u− u′, x)−φ(T ′ − v − v′, x). Therefrom, by Lemma
2 φ(T ′, x) − φ(T, x) < 0 for x ≥ ρ(T ′), since T ′ − v − v′ is a spanning subgraph
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of T − u − u′ (note that the former graph can be obtained from the latter one by
deleting one edge). So the proof follows easily. �

Recall here that Pn,d is a palm tree as already defined.

Theorem 6. If 4 ≤ d ≤ n − 4 then ρ(Mn,d) < ρ(Pn,d).

Proof. For short, put Tk = Mn,d and T ′
k = Pn,d, where k = n − d − 2. Note that

k is the number of pendant edges in the larger bouquet of Tk, while k + 1 is the
number of edges in the unique bouquet of T ′. Clearly, k ≥ 2 (by assumptions).

Assume first that d = 4. Let ∆k(x) = φ(Tk, x) − φ(T ′
k, x). By Lemma 1 (in

both trees take u a pendant vertex taken from the bouquets of sizes k, or k + 1)
we easily get

∆k(x) = x∆k−1(x) − xk−1
(
φ(P2 ∪ P3, x) − x2φ(P3, x)

)
.

Therefrom, ∆k(x) = x∆k−1(x) + xk(x2 − 2). Since ∆2(x) = 2x2(x2 − 4) (by direct
calculations), we have that ∆2(x) > 0 for any x > 2. Consequently, ∆k(x) > 0 for
any k ≥ 2 whenever we take x > 2. Since the indices of the observed graphs are
always greater than 2, we are done.

Assume next that d ≥ 5. Consider first the graph Tk + e, where e is an edge
joining the vertices in Tk which are at distance d. Clearly, ρ(Tk) < ρ(Tk + e). We
note also that the graph Tk + e is a unicyclic graph containing a cycle of length
d + 1. Next, all vertices of this cycle but two are of degree 2. We can now remove
(or suppress) d − 4 vertices of degree 2 from the cycle to reduce its length to 5.
The graph obtained in this way, extended by an isolated vertex, will be denoted by
T̂k. By Lemma 7, we have ρ(Tk + e) < ρ(T̂k), and thus ρ(Tk) < ρ(T̂k). Note that
T̂k has k + 7 vertices. Consider next the graph T̂ ′

k obtained from Pn,d by reducing

its diameter to five, namely T̂ ′
k = Pk+7,5. Note that T̂ ′

k has also k + 7 vertices.

Clearly, we then we have that ρ(T̂ ′
k) < ρ(T ′

k). To prove the theorem it is enough

to prove that ρ(T̂k) < ρ(T̂ ′
k). Now, let ∆k(x) = φ(T̂k, x) − φ(T̂ ′

k, x). By Lemma 1
again (choosing u as above) we easily get

∆k(x) = x∆k−1(x) − xk
(
φ(P5, x) − xφ(P4, x)

)
.

From this we obtain ∆k(x) = x∆k−1(x) + xkφ(P3, x). Since ∆2(x) = 2x3
(

x2 −

x −
5

2

)

(by direct calculations) we have that ∆2(x) > 0 for any x >
1 +

√
11

2
.

Consequently, ∆k(x) > 0 for any k ≥ 2 and x >
1 +

√
11

2
. Since the indices of

the observed graphs are always greater than
1 +

√
11

2
(as can be easily seen by the

Interlacing theorem, and direct calculations on some subgraphs), we are done.

This completes the proof. �

A more interesting situation appears when d = n − 3 (then k = 1, and Mn,d

has a very simple structure). Based on computer experiments we now have that
for 7 ≤ n ≤ 9 (then 4 ≤ d ≤ 6) that ρ(Mn,d) < ρ(Pn,d). But for n ≥ 10 (or
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d ≥ 7) it was observed that ρ(Mn,d) > ρ(Pn,d). The following theorem resolves this
situation.

Theorem 7. If d = n − 3 and n ≥ 10, then ρ(Pn,d,1) < ρ(Mn,d) < ρ(Pn,d,2).

Proof. We first consider the left inequality. According to A. J. Hoffman (see
[5], or [1], p. 78) we have that the limiting point for the index of Gn, where Gn is
a graph obtained from a connected graph G by attaching to a vertex u a path of
length n, is equal to the greatest positive root of the equation

1

2

(
x +

√

x2 − 4
)
φ(G, x) − φ(G − u, x) = 0.

Of course, this holds only if the limiting point is greater than 2. Applying this fact
to G = K1,3, where u is the central vertex, we get that ρ∗ ≈ 2.1213 is the limit
point. On the other hand, ρ(Mn,n−3) ≥ ρ(M10,7) ≈ 2.1268. So we are done.

Consider next the right inequality. For n = 10, we have that ρ(M10,7) ≈
2.1268, while ρ(P10,7,2) ≈ 2.1679 and we are done. Assume next that n ≥ 11. We
will now use the same argument as in the proof of the previous theorem. So, if we
add an edge between two vertices at the greatest distance, and if we reduce the
number of vertices of degree 2 on the cycle to 7, we get a graph whose index is
approximately equal to 2.1634, and thus (by Lemma 7) ρ(Mn,d) < 2.1634. On the
other hand 2.1692 ≈ ρ(P11,8) ≤ ρ(Pn,n−3) for any n ≥ 11. So we are again done.

This completes the proof. �

We will now summarize the main results of this paper. Let Tn,d be the set of
trees on n vertices and diameter d. For a fixed n we will assume that 4 ≤ d ≤ n−3
(cases d ≤ 2 or d = n − 1 are trivial; case d = 3 is given in (1); case d = n − 2 is
given in (2)).

Theorem 8. If 4 ≤ d ≤ n − 4, or if n ≤ 9 and d = n − 3, then

(3) ρ
(
Pn,d,b d

2
c

)
> ρ(Pn,d,b d

2
c−1) > · · · > ρ(Pn,d,2) > ρ(Pn,d,1) > ρ(Mn,d)

and ρ(Mn,d) > ρ(T ) for any other tree from Tn,d. If d = n − 3 and n ≥ 10, then

(4) ρ
(
Pn,d,b d

2
c

)
> ρ(Pn,d,b d

2
c−1) > · · · > ρ(Pn,d,3) > ρ(Pn,d,2) > ρ(Mn,d)

and ρ(Mn,d) > ρ(T ) for any other tree from Tn,d.

It is interesting to note that in (4) we have a slight change which can be
interesting to explain. More on this phenomenon will appear elsewhere in the
forthcoming papers by F. Belardo, E. M. Li Marzi and S. K. Simić.
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2. D. Cvetković, P. Rowlinson: The largest eigenvalue of a graph: A survey. Linear

and Multilinear Algebra, 28 (1990), 3–33.
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