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THE CONJUGATE FORMAL PRODUCT

OF A GRAPH

Mirko Lepović

Let G be a simple graph of order n and let V (G) be its vertex set. Let
c = a + b

√
m and c = a − b

√
m, where a and b are two nonzero integers

and m is a positive integer such that m is not a perfect square. We say that
Ac = [cij ] is the conjugate adjacency matrix of the graph G if cij = c for
any two adjacent vertices i and j, cij = c for any two nonadjacent vertices
i and j, and cij = 0 if i = j. Let P c

G(λ) = |λI − Ac| denote the conjugate
characteristic polynomial of G and let [Ac

ij] = {λI−Ac}, where {M} denotes
the adjoint matrix of a square matrix M . For any two subsets X, Y ⊆ V (G)
define 〈X, Y 〉c =

∑

i∈X

∑

j∈Y

A
c
ij. The expression 〈X, Y 〉c is called the conjugate

formal product of the sets X and Y , associated with the graph G. Using the
conjugate formal product we continue our previous investigations of some
properties of the conjugate characteristic polynomial of G.

1. INTRODUCTION

Let G be a simple graph of order n and let V (G) be its vertex set. The
spectrum of the graph G consists of the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of its (0,1)
adjacency matrix A = A(G) and is denoted by σ(G). The Seidel spectrum of G

consists of the eigenvalues λ∗

1 ≥ λ∗

2 ≥ · · · ≥ λ∗

n of its (0,−1, 1) adjacency matrix
A∗ = A∗(G) and is denoted by σ∗(G). Let PG(λ) = |λI−A| and P ∗

G(λ) = |λI−A∗|
denote the characteristic polynomial and the Seidel characteristic polynomial,
respectively. Let c = a + b

√
m and c = a − b

√
m where a and b are two nonzero

integers and m is a positive integer such that m is not a perfect square. We
say that Ac = [cij ] is the conjugate adjacency matrix of G if cij = c for any
two adjacent vertices i and j, cij = c for any two nonadjacent vertices i and j,
and cij = 0 if i = j. The conjugate spectrum of G is the set of the eigenvalues
λc

1 ≥ λc
2 ≥ · · · ≥ λc

n of its conjugate adjacency matrix Ac = Ac(G) and is denoted
by σc(G). Let P c

G(λ) = |λI − Ac| denote the conjugate characteristic polynomial
of G.
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The concept of conjugate adjacency matrices has been defined in [7]. In that
paper we have proved some elementary results related to the conjugate characteris-
tic polynomial. In particular, we have proved the following results (i) the conjugate
characteristic polynomial of its complement G can be determined by the conjugate
characteristic polynomial of G; (ii) the characteristic polynomial of G with respect
to the ordinary adjacency matrix can be determined by its conjugate characteristic
polynomial; (iii) the conjugate characteristic polynomial of G is uniquely deter-
mined by the conjugate characteristic polynomials of its vertex-deleted subgraphs.

In this work, in order to provide more information on conjugate characteristic
polynomial, we define the conjugate formal product associated with the graph G,
as follows.

2. THE CONJUGATE FORMAL PRODUCT

For a square matrix M denote by {M} the adjoint of M and for any two
subsets X, Y ⊆ V (G) define 〈X, Y 〉 =

∑

i∈X

∑

j∈Y

Aij, where [Aij] = {λI − A}. Ac-

cording to [3], the expression 〈X, Y 〉 is called the formal product of the sets X and
Y , associated with a graph G. In this work 〈X, Y 〉c =

∑

i∈X

∑

j∈Y

Ac
ij is called the

conjugate formal product of the sets X and Y , associated with the graph G, where
[Ac

ij] = {λI − Ac}.
For any two disjoint subsets X, Y ⊆ V (G) let X + Y denote the union of

X and Y . We note that 〈X + Y, Z〉c = 〈X, Z〉c + 〈Y, Z〉c for any Z ⊆ V (G) and
〈X, Y 〉c = 〈Y, X〉c for any (not necessarily disjoint) X, Y ⊆ V (G).

Further, let S be any (possibly empty) subset of the vertex set V (G) and let
GS be the graph obtained from the graph G by adding a new vertex x (x 6∈ V (G)),
which is adjacent exactly to the vertices from S. According to [3],

(1) PGS
(λ) = λPG(λ) − 〈S, S〉 .

Using the method applied in [3] for getting relation (1), one can easily see
that the conjugate characteristic polynomial of GS is

(2) P c
GS

(λ) = λP c
G(λ) − c2 〈S, S〉c − c 2 〈T, T 〉c − 2c c 〈S, T 〉c ,

where T = V (G) \ S.

Let G be an arbitrary connected graph of order n. We say that two vertices
x, y ∈ V (G) are equivalent and write x ∼ y if x is non-adjacent to y, and x and y

have the same neighbors in G. Relation ∼ is an equivalence relation on the vertex
set V (G). The corresponding quotient graph is denoted by G̃ and is called the
canonical graph of G.

Let G̃ be the canonical graph of G, |G̃| = k, and N1, N2, . . . , Nk be the cor-
responding sets of equivalent vertices of G. Then we write G = G̃(n1, n2, . . . , nk),
where |Ni| = ni (i = 1, 2, . . . , k), understanding that G̃ is a labelled graph.
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It was proved in [9] that the characteristic polynomial PG(λ) of the graph G

takes the form

(3) PG(λ) = n1 · n2 · . . . · nk λn−k
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where Ã = [ãij ] is the adjacency matrix of the canonical graph G̃.

Using the same method as in [9] for obtaining relation (3), we can easily see
that the conjugate characteristic polynomial P c

G(λ) of the graph G is

(4) P c
G(λ) = (λ + c)n−k
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where Ãc = [c̃ij ] is the conjugate adjacency matrix of the canonical graph G̃.

Let G be any (not necessary canonical) graph of order n. Let Gx1,x2,...,xk

be the overgraph of G obtained by adding new vertices x1, x2, . . . , xk equivalent
to a vertex i of G, say i = 1, so that the vertices x1, x2, . . . , xk, 1 are mutually
non-adjacent and have the same neighbors in G. In view of (4), applying the
same method as in [9] for deriving relation (3), we can see that the conjugate
characteristic polynomial of Gx1,x2,...,xk

is

(5) P c
Gx1,x2,...,xk

(λ) = (λ + c)k
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,

where Ac = [cij ] is the conjugate adjacency matrix of the graph G.

Let S be any subset of V (G) and let G2S be the overgraph of G obtained by
adding two new non-adjacent vertices x, y which are both adjacent to the vertices
from S. We note that G2S is obtained from GS by adding a new vertex y which is
equivalent to x ∈ V (GS). Thus, using (1) we have

P c
G2S

(λ) = λP c
GS

(λ) − c2 〈S, S〉c − c 2 〈T, T 〉c − 2c c 〈S, T 〉c ,

where 〈X, Y 〉c is the conjugate formal product associated with GS .
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Proposition 1. The conjugate characteristic polynomial P c
G2S

(λ) of the graph G2S

reads

P c
G2S

(λ) = (λ + c )
(

(λ − c )P c
G(λ) − 2c2 〈S, S〉c − 2c 2 〈T, T 〉c − 4c c 〈S, T 〉c

)

,

where 〈X, Y 〉c is the conjugate formal product associated with the graph G.

Proof. Without loss of generality we may assume that S = {1, 2, . . . , i}. Using
(5), we get

P c
G2S

(λ) = (λ + c )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ · · · − c1i · · · − c1n − c
...

. . .
...

...
...

...
− ci1 · · · λ · · · − cin − c

...
...

...
. . .

...
...

− cn1 · · · − cni · · · λ − c

− 2c · · · − 2c · · · − 2c λ − c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Using the method which is applied in [3] for getting (1), by a straight-forward
calculation we obtain the required statement. �

Let S be any subset of V (G) and let GkS be the overgraph of G obtained by
adding k mutually non-adjacent vertices x1, x2, . . . , xk, all adjacent exactly to the
vertices in S.

Corollary 1. The conjugate characteristic polynomial P c
GkS

(λ) of the graph Gks

reads

P c
GkS

(λ) = (λ + c )k−1
(

(λ − (k − 1)c )P c
G(λ) − k[S, S]c

)

,

where [S, S]c = c2〈S, S〉c + c 2〈T, T 〉c + 2c c 〈S, T 〉c.
Using (2) we find that [S, S]c = λP c

G(λ) − P c
GS

(λ). Finally, according to
Corollary 1 we obtain the following result.

Proposition 2. The conjugate characteristic polynomial P c
GkS

(λ) of the graph Gks

reads

P c
GkS

(λ) = (λ + c )k−1
(

kP c
GS

(λ) − (k − 1)(λ + c )P c
G(λ)

)

for any S ⊆ V (G) and any k ∈ N.

Corollary 2. If GS1
and GS2

are two conjugate cospectral graphs then GkS1
and

GkS2
are also conjugate cospectral for any k ∈ N.

Let Ak = [a
(k)
ij ] for any non-negative integer k. The number Wk of all walks of

length k in G equals sumAk, where sumM is the sum of all elements in a matrix
M . According to [1], the generating function WG(t) of the numbers Wk of length
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k in the graph G is defined by WG(t) =
+∞
∑

k=0

Wktk. Besides [1]

(6) WG(t) =
1

t







(−1)nPG

(

− t + 1

t

)

PG

( 1

t

)

− 1






,

where G denotes the complement of G. The function W c
G(t) =

+∞
∑

k=0

W c
k tk is called

the conjugate generating function [7], where W c
k = sum (Ac)k and (Ac)k = [c

(k)
ij ].

According to [7],

(7) WG(t) = − 2b
√

m

(a − b
√

m )t









P c
G

(

2b
√

m − (a − b
√

m )t

t

)

(

2b
√

m
)n

PG

( 1

t

)

− 1









.

Therefore, making use of (6) and (7), by an easy calculation we obtain the
following relation

(8) P c
G

(

2b
√

m λ − c
)

=
(

2b
√

m
)n−1(

cPG(λ) − (−1)n cPG (−λ − 1)
)

.

Proposition 3 (Lepović [4]). Let G be a graph of order n and let S ⊆ V (G).
Then

(9) PGS
(λ) − PGT

(λ) = (−1)n
(

PGS
(−λ − 1) − PGT

(−λ − 1)
)

,

where T = V (G) \ S.

Proposition 4. Let G be a graph of order n and let S ⊆ V (G). Then

P c
GS

(λ) − P c
GT

(λ) = (−1)n
(

P c

GS
(−λ − 2a) − P c

GT
(−λ − 2a)

)

,

where T = V (G) \ S.

Proof. First, applying (8) to GS and GT and using (9), by a straight-forward
calculation we find that

P c
GS

(

2b
√

m λ − c
)

− P c
GT

(

2b
√

mλ − c
)

= 2a
(

2b
√

m
)n(

PGS
(λ) − PGT

(λ)
)

.

Applying the last relation to GS and GT and making use of (9), we easily
obtain the statement. �

Definition 1 (Lepović [5]). A graph G of order n is called spectral complementary,

if

(10) PG(λ) − PG(λ) = (−1)n
(

PG(−λ − 1) − PG(−λ − 1)
)

.
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Some elementary results of the spectral complementary graphs have been
proved in [5] and [6]. Among other things, we proved (i) G∪G is spectral comple-
mentary for any G; (ii) there is no spectral complementary graph of order 4k + 3
for any non-negative integer k; (iii) G is spectral complementary if and only if its
Seidel spectrum σ∗(G) is symmetric with respect to the zero point. In this work,
combining (8) and (10) we obtain the following result.

Proposition 5. Let G be a graph of order n. Then G is spectral complementary

if and only if

P c
G(λ) − P c

G
(λ) = (−1)n

(

P c
G(−λ − 2a) − P c

G
(−λ − 2a)

)

.

Further, let [W c
G(t)] =

+∞
∑

k=0

(Ac)k tk. It is clear that W c
G(t) = sum [W c

G(t)]. In

view of this we find that [W c
G(t)] = |I − tA|−1 · {I − tAc}, which results in

1

λn−1
Ac

ij =
1

λn
P c

G(λ)

+∞
∑

k=0

c
(k)
ij

1

λk
,

where [Ac
ij] = {λI−Ac}. Consequently, for any two sets X, Y ⊆ V (G) the following

relations is obtained

〈X, Y 〉c =
∑

i∈X

∑

j∈Y

Ac
ij =

P c
G(λ)

λ

∑

i∈X

∑

j∈Y

[ +∞
∑

k=0

c
(k)
ij

1

λk

]

=
P c

G(λ)

λ

+∞
∑

k=0

[

∑

i∈X

∑

j∈Y

c
(k)
ij

]

1

λk

=
P c

G(λ)

λ
Fc

X,Y

( 1

λ

)

.

Proposition 6. Let X, Y be any two subsets of the vertex set V (G). Then

〈X, Y 〉c =
P c

G(λ)

λ
Fc

X,Y

( 1

λ

)

,

where Fc
X,Y (t) =

+∞
∑

k=0

cktk and ck =
∑

i∈X

∑

j∈Y

c
(k)
ij (k = 0, 1, 2, . . . ).

The function Fc
X,Y (t) is called the formal conjugate generating function, as-

sociated with the graph G. In particular, for Y = X we denote the corresponding
formal conjugate generating function Fc

X,Y (t) by Fc
X(t).

Let i be a fixed vertex from the vertex set V (G) and let Gi = G \ i be its
corresponding vertex deleted subgraph.

Proposition 7. Let G be a graph of order n. Then for any vertex deleted subgraph

Gi we have

(11) P c
Gi

(λ) =
P c

G(λ)

λ

+∞
∑

k=0

c
(k)
ii

λk
.
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Proof. We note that Ac
ii = P c

Gi
(λ) for i = 1, 2, . . . , n. Using Proposition 6 we

obtain the proof. �

We note also that Fc
S•(t) = W c

G(t) if S• = V (G). Using this fact and using
the following relation [7]

(12) W c
G(t) =

1

2at







(−1)nP c

G

(

− 2at + 1

t

)

P c
G

( 1

t

)

− 1






,

we arrive at

Proposition 8. Let G be a graph of order n and let G• = GS• , where S• = V (G).
Then

(13) P c
G•(λ) =

(

λ +
c2

2a

)

P c
G(λ) − (−1)n c2

2a
P c

G
(−λ − 2a) .

Proof. Using (2) we get P c
G•(λ) = λP c

G(λ) − c2〈S•, S•〉c. Using (12) and Proposi-
tion 6 we obtain the statement. �

Proposition 9. Let G be a graph of order n and let G• = GS•
, where S• = ∅.

Then

(14) P c
G•

(λ) =
(

λ +
c 2

2a

)

P c
G(λ) − (−1)n c 2

2a
P c

G
(−λ − 2a) .

Proof. Using (2) we get P c
G•

(λ) = λP c
G(λ) − c 2〈S•, S•〉c. Using (12) and Propo-

sition 6 we obtain the statement. �

Next, replacing λ with x + y
√

m the conjugate characteristic polynomial
P c

G(λ) can be transformed into the form

(15) P c
G(x + y

√
m) = Qn(x, y) +

√
mRn(x, y) ,

where Qn(x, y) and Rn(x, y) are two polynomials of order n in variables x and y,
whose coefficients are integers. Besides, according to [7]

(16) P c

G
(x − y

√
m) = Qn(x, y) −√

mRn(x, y) .

We demonstrated in [8] that the characteristic polynomial and the Seidel

characteristic polynomial of G can be expressed by polynomials Qn(−a, λ) and
Rn(−a, λ). We shall now determine the corresponding polynomials Qn(x, y) and
Rn(x, y) for G• and G•.
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Proposition 10. Let P c
G(x + y

√
m ) = Qn(x, y) +

√
m Rn(x, y). Then we have :

Q
(k)
n+1(x, y) =

a2 + mb2

2a

(

Qn(x, y) − (−1)n Qn(−x − 2a, y)
)

(17)

± mb
(

Rn(x, y) + (−1)n Rn(−x − 2a, y)
)

+ xQn(x, y) + myRn(x, y) ;

R
(k)
n+1(x, y) =

a2 + mb2

2a

(

Rn(x, y) + (−1)n Rn(−x − 2a, y)
)

(18)

± b
(

Qn(x, y) − (−1)n Qn(−x − 2a, y)
)

+ xRn(x, y) + y Qn(x, y) ,

where Q
(k)
n+1(x, y) and R

(k)
n+1(x, y) for k = 1, 2 are related to G• and G•, respectively.

The symbol ’±’ is related to ’ +’ if k = 1 and ’±’ is related to ’−’ if k = 2.

Proof. Applying (13) and (14) to G• and G• and to their complements G• and

G
•

, and making use of (15) and (16), we arrive at (17) and (18). �

Corollary 3. Let P c
G(x + y

√
m ) = Qn(x, y) +

√
m Rn(x, y). Then we have :

• Q
(k)
n+1(− a, λ) = − a Qn(− a, λ) + m(λ ± 2b)Rn(− a, λ) if n is even ;

• Q
(k)
n+1(− a, λ) =

mb2

a
Qn(− a, λ) + mλRn(− a, λ)

if n is odd.

Corollary 4. Let P c
G(x + y

√
m ) = Qn(x, y) +

√
m Rn(x, y). Then we have :

• R
(k)
n+1(− a, λ) = (λ ± 2b)Qn(− a, λ) − aRn(− a, λ) if n is odd;

• R
(k)
n+1(− a, λ) = λQn(− a, λ) +

mb2

a
Rn(− a, λ)

if n is even.

3. THE CONJUGATE ANGLE MATRIX

Let µc
1 > µc

2 > · · · > µc
m be the distinct conjugate eigenvalues of a graph G

of order n and let EAc(µc
i ) denote the eigenspace of the conjugate eigenvalue µc

i .
Let {e1, e2, . . . , en} be the standard orthonormal basis of R

n and let Pc
i denote the

orthogonal projection of the space R
n onto EAc(µc

i ).

Definition 2. The numbers ||Pc
iej || = cosβc

ij (i = 1, 2, . . . , m; j = 1, 2, . . . , n),
where βc

ij is the angle between EAc(µc
i ) and ej , are called the conjugate angles of

G. The m × n matrix Ac = [Pc
iej ] is called the conjugate angle matrix of G. The

(i, j)-entry of Ac is ||Pc
iej||.

The conjugate angle matrix Ac is an algebraic (graph) invariant, provided
that its columns are ordered lexicographically.



The conjugate formal product of a graph 435

Using the same arguments as in [2], we have (i)
n
∑

j=1

γ2
ij = dim EAc(µc

i ), where

γij = cosβc
ij ; (ii)

m
∑

i=1

γ2
ij = 1. Besides, using the spectral decomposition of Ac, the

following relation is obtained

(19) c
(k)
ii =

m
∑

j=1

(µc
j)

kγ2
ji (k = 0, 1, 2, . . . ) .

We note from (19) that
m
∑

j=1

µc
j γ2

ji = 0 and
m
∑

j=1

(µc
j)

2 γ2
ji = di c2 + ((n − 1) − di) c 2,

where di denotes the degree of the vertex i. Moreover, from (11) and (19) we find
the next result.

Proposition 11. Let G be a graph of order n. Then for any vertex deleted subgraph

Gi we have

P c
Gi

(λ) = P c
G(λ)

m
∑

j=1

γ2
ji

λ − µc
j

.

Proposition 12 (Lepović [7]). If G and H are two conjugate cospectral graphs

then their complementary graphs G and H are also conjugate cospectral.

Corollary 5. If γki = γkj for k = 1, 2, . . . , m then σc(Gi) = σc(Gj) and σc(Gi) =
σc(Gj).

Finally, using the conjugate formal product and conjugate formal generating
functions, we shall determine the conjugate characteristic polynomial of the graph
(Kn)S , where Kn is the complete graph on n vertices and S ⊆ V (Kn). First, we
note from (2) and Proposition 6 that

(20) P c
GS

(λ) = P c
G(λ)

[

λ − 1

λ
Fc

[S]

( 1

λ

)]

,

where Fc
[S](t) = c2 Fc

S(t) + c 2 Fc
T (t) + 2ccFc

S,T (t).

Proposition 13. For S ⊆ V (Kn) let s = |S| and r = sc2 + (n − s) c 2. Then

P c
(Kn)S

(λ) = (λ + c)n−2 ∆(λ), where

∆(λ) = λ3 − (n − 2) c λ2 −
(

r + (n − 1) c2
)

λ −
(

r − s(n − s)(c − c )2
)

c .

Proof. Since Kn is a regular graph of degree n − 1, we obtain that W c
k = n(n −

1)k ck. Let αk = c
(k)
11 and βk = c

(k)
12 (k = 0, 1, 2, . . . ). It is clear that c

(k)
ii = αk

(i = 1, 2, . . . , n) and c
(k)
ij = βk (i 6= j). Consequently, we get n(n − 1)k ck =

nαk + (n2 − n)βk. Since αk = (n − 1) c βk−1, the expressions for

αk =
[ (n − 1)k + (−1)k(n − 1)

n

]

ck and βk =
[ (n − 1)k + (−1)k−1

n

]

ck
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can be obtained by solving the linear recursions

βk = (n − 1)k−1 ck − c βk−1 and αk = (n − 1) c βk−1

with α0 = 1 and β0 = 0.

Since ck =
∑

i∈S

∑

j∈S

c
(k)
ij and |S| = s, we have ck = sαk + (s2 − s)βk. In view

of this we get

ck =
[s2(n − 1)k + (−1)k−1 s2 + (−1)k sn

n

]

ck ,

which results in

(21) F
c
S(t) =

s2

n(1 − (n − 1) ct)
− s2

n(1 + ct)
+

s

1 + ct
.

Similarly, we obtain

(22) F
c
T (t) =

(n − s)2

n(1 − (n − 1) ct)
− (n − s)2

n(1 + ct)
+

n − s

1 + ct
.

Now, denote by ek the corresponding coefficients of the function Fc
S,T (t).

Since ek = s(n − s)βk, we arrive at

Fc
S,T (t) =

s(n − s)

n(1 − (n − 1) ct)
+

s2

n(1 + ct)
− s

1 + ct
.

From (21), (22) and the last relation, by an easy calculation we obtain that
the corresponding function Fc

[S](t) reads

Fc
[S](t) =

(

r − s(n − s)(c − c )2
)

ct + r

(1 − (n − 1)ct)(1 + ct)
.

Finally, using that P c
Kn

(λ) = (λ + c)n−1(λ − (n − 1)c) and using (20), we
obtain the statement. �

REFERENCES

1. D. Cvetković, M. Doob, H. Sachs: Spectra of graphs – Theory and applications,

3rd revised and enlarged edition. J.A. Barth Verlag, Heidelberg – Leipzig, 1995.
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