
Applicable Analysis and Discrete Mathematics, 1 (2007), 386–396.

Available electronically at http://pefmath.etf.bg.ac.yu

ADDITIONAL ANALYSIS OF BINOMIAL

RECURRENCE COEFFICIENTS

H. W. Gould, Jocelyn Quaintance

This paper involves an investigation of
(

f(n)
)

∞

n=1
, where f(n) is defined by

(0.1) f(n + 1) =
n

∑

k=1

(

n

k

)

f(k), n ≥ 1.

Through successive iterations of (0.1), it is shown that

(0.2) f(n + r) =
n

∑

k=1

f(k)
r−1
∑

j=0

A
r
j(n)

(

n + j

k

)

, r ≥ 1, n ≥ 1.

The Ar
j(n) of (0.2) are the binomial recurrence coefficients. The main result

of this paper is a recurrence formula for the Ar
j (n), namely,

(0.3)
r−1
∑

j=k

(

j

k

)

A
r
j = A

r
k−1,

where Ar
j ≡ Ar

j(0). This paper then provides two applications involving (0.3).
The first involves series inversion while the second involves polynomials whose
general term has the form Ar

jx
j .

1. INTRODUCTION

This paper is a continuation of the work done in [1]. In that paper, we
investigated the general binomial recurrence

(1.1) f(n + 1) =

n
∑

k=0

(n
k

)

f(k), n ≥ 1.
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Through successive iterations of (1.1), we obtained the linear recurrence formula

(1.2) f(n + r) =

n
∑

k=0

f(k)

r−1
∑

j=0

Ar
j(n)

(n + j
k

)

, r ≥ 1, n ≥ 1,

where the Ar
j(n) satisfy the recurrence relation

(1.3) Ar+1
j (n) =

r−j−1
∑

i=0

(n + r
i

)

Ar−i
j (n), 0 ≤ j ≤ r − 1,

with Ar+1
r (n) = 1. We assume Ar

j(n) = 0 for j < 0 or j > r − 1. In [1], we called
the Ar

j(n) binomial recurrence coefficients.

We are particularly interested in the quantity Ar
j(0) ≡ Ar

j , since Ar
j(n) can

be determined directly from Ar
j by using the recursive formula

(1.4) Ar+1
j+1(n) = Ar

j(n + 1), j ≥ 1, r ≥ 0.

Thus, a useful reformulation of (1.3) is

(1.5) Ar+1
j =

r−j−1
∑

i=0

(

r
i

)

Ar−i
j , 0 ≤ j ≤ r − 1.

Notice that in (1.3) and (1.5), the recurrence formula involves summation
over the upper index of the binomial recurrence coefficient. The main result of
this paper, Theorem 2.1, involves a new recurrence formula of the Ar

j . In this new
formula, we sum on the lower index of the binomial recurrence coefficient. We then
discuss two applications of Theorem 2.1 The first application is the proof of the
inversion theorem, Theorem 3.1, which was stated in [1] without proof. We also

use Theorem 2.1 to obtain a closed form for the
r−1
∑

j=0

Ar
jx

j .

2. ANOTHER RECURSION FOR A
r
j

The discovery of Theorem 2.1 comes from analyzing the series

(2.1)

r−1
∑

j=1

jpAr
j , p ≥ 0.

In [1], we proved that

(2.2)
r−1
∑

j=1

jAr
j = Ar

0, r ≥ 2,
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and stated that

(2.3)

r−1
∑

j=1

j2Ar
j = Ar

0 + 2Ar
1, r ≥ 3.

We now provide a short proof of (2.3). In order to prove (2.3), recall, from
[1], that

(2.4) f(n + r) =
n

∑

k=0

f(k)
r−1
∑

j=0

Ar
j(n)

(

n + j
k

)

, r ≥ 1, n ≥ 1.

Let n = 2 in (2.4). We then obtain

(2.5) f(r + 2) = f(0)

r−1
∑

j=0

Ar
j(2) + f(1)

r−1
∑

j=0

(2 + j)Ar
j(2)

+ f(2)
r−1
∑

j=0

(j + 2)(j + 1)

2
Ar

j(2).

In [1], we show that

(2.6) Ar+1
j+1(n) = Ar

j(n + 1), j ≥ 1, r ≥ 0.

By substituting (2.6) into the right hand sums of (2.5), we obtain

(2.7) f(r+2) = f(0)

r−1
∑

j=0

Ar+2
j+2 +f(1)

r−1
∑

j=0

(2+j)Ar+2
j+2 +f(2)

r−1
∑

j=0

(j + 2)(j + 1)

2
Ar+2

j+2

= f(0)

r
∑

j=1

Ar+2
j+1 + f(1)

r
∑

j=1

(1 + j)Ar+2
j+1 + f(2)

r
∑

j=1

j(j + 1)

2
Ar+2

j+1 .

In [1], we showed that

(2.8) B(r) =

r−1
∑

j=0

Ar
j , r ≥ 1,

where B(r) is the rth Bell number.

Substitute (2.8) into (2.7) and obtain

(2.9) f(r + 2) = f(0)(B(r + 2) − Ar+2
0 − Ar+2

1 ) + f(1)

r
∑

j=1

(1 + j)Ar+2
j+1

+ f(2)
r

∑

j=1

j(j + 1)

2
Ar+2

j+1 .
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In (2.9), we let f(r) = B(r), f(0) = B(0) = 1, f(1) = B(1) = 1, and f(2) = B(2) =
2. After making these substitutions and simplifying the following result, we obtain

(2.10) Ar+2
0 + Ar+2

1 =

r
∑

j=1

(j + 1)2Ar+2
j+1 .

In (2.10), replace j + 1 with j and r + 2 with r. We then obtain

(2.11) Ar
0 + Ar

1 =
r−1
∑

j=1

j2Ar
j − Ar

1.

Clearly (2.11) is equivalent to (2.3).

By assuming (2.2) and (2.3), we can inductively iterate (2.4) to obtain the
following results.

(2.12)
r−1
∑

j=1

j3Ar
j = Ar

0 + 6Ar
1 + 6Ar

2, r ≥ 4

(2.13)

r−1
∑

j=1

j4Ar
j = Ar

0 + 14Ar
1 + 36Ar

2 + 24Ar
3, r ≥ 5

(2.14)

r−1
∑

j=1

j5Ar
j = Ar

0 + 30Ar
1 + 150Ar

2 + 240Ar
3 + 120Ar

4, r ≥ 6.

Inspection of Equations (2.2), (2.3), (2.12), (2.13) and (2.14) allows us to
form the following conjecture.

Conjecture 2.1.

(2.15)

r−1
∑

j=0

jpAr
j =

p
∑

k=1

k!

{

p
k

}

Ar
k−1.

where

{

p
k

}

is the appropriate Stirling number of the second kind.

It is well known that [2, p. 70]

(2.16) xp =

p
∑

k=0

k!
(x
k

)

{

p
k

}

.

In fact, this is the definition of

{

p
k

}

.

If we let x = j, (2.16) implies

(2.17)
r−1
∑

j=0

jpAr
j =

r−1
∑

j=0

p
∑

k=0

k!
(

j
k

)

{

p
k

}

Ar
j =

p
∑

k=0

k!

{

p
k

} r−1
∑

j=0

(

j
k

)

Ar
j .
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By comparing the coefficient of k!

{

p
k

}

in (2.15) versus (2.17), we obtain the

following conjecture.

Conjecture 2.2.

(2.18)

r−1
∑

j=k

(j
k

)

Ar
j = Ar

k−1.

Remark 2.1. An alternative way of showing the equivalence between Conjectures 2.1 and
2.2 uses the Stirling Inversion Formula. Recall that [2, p. 94],

f(n) =
n

∑

k=0

{

n

k

}

g(k)

if and only if

(2.19) g(n) =

n
∑

k=0

(−1)n−k

[

n

k

]

f(k),

where (−1)n−k

[

n

k

]

is the appropriate Stirling number of the first kind.

In our case, let g(k) = k!Ar
k−1 and f(k) =

r−1
∑

j=0

jkAr
j . Then (2.19) becomes,

(2.20) p!Ar
p−1 =

p
∑

k=0

(−1)p−k

[

p

k

] r−1
∑

j=0

j
k
A

r
j

=

r−1
∑

j=0

A
r
j

p
∑

k=0

(−1)p−k

[

p

k

]

j
k =

r−1
∑

j=0

p!Ar
j

(

j

p

)

.

Note that the equivalence between the two sums in (2.20) is simply the definition of

(−1)n−k

[

n

k

]

[2, p. 70]. The above calculations show that

(2.21) p!Ar
p−1 =

r−1
∑

j=0

p!Ar
j

(

j

p

)

.

By dividing both sides of (2.21) by p!, we obtain Conjecture 2.2.

Conjecture 2.2 provides a new recursive formula for the Ar
k. In terms of Table

1, (2.18) implies that a particular value of Ar
k can be obtained by summing the row

entries that lie to the right of the value we are trying to find. In [1], we obtain a
different recursive formula for the Ar

k, namely,

(2.22)

r−1−k
∑

i=0

(r − 1
i

)

Ar−1−i
k−1 = Ar

k−1.
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In terms of Table 1, (2.22) implies that a particular value of Ar
k can be

obtained by summing the vertical entries that lie above the value we are trying to
find. By using (2.22) and induction on r, we are able to prove (2.18). Thus, we
have the following theorem.

Theorem 2.1.

(2.23)
r−1
∑

j=k

(

j
k

)

Ar
j = Ar

k−1.

Proof. We use mathematical induction on r. It is easily shown that (2.23) is true
for r = 2 since

1
∑

j=1

(

j
k

)

A2
j = A2

1 = 1 = A2
0.

We now assume (2.23) is true for the first r − 1 rows of Table 1. We look at Ar
k−1.

By (2.22) we know

(2.24) Ar
k−1 =

r−1−k
∑

i=0

(

r − 1
i

)

Ar−1−i
k−1 .

By our induction hypothesis, we assume (2.23) is true for each Ar−1−i
k−1 that occurs

in the right hand sum of (2.24). Thus, we can write (2.24) as the following double
sum.

(2.25) Ar
k−1 =

r−1−k
∑

i=0

(r − 1
i

)

r−2−i
∑

j=k

(j
k

)

Ar−1−i
j .

Interchanging the order of summation in (2.25) gives us

(2.26) Ar
k−1 =

r−2
∑

j=k

(j
k

)

r−2−j
∑

i=0

(r − 1
i

)

Ar−1−i
j +

( r − 1
r − 1 − k

)

Ak
k−1.

The inner sum on the right hand side of (2.26) is a special case of (2.22). Also, in
[1], we showed that Ak

k−1 = Ar
r−1 = 1. Thus, (2.26) becomes,

Ar
k−1 =

r−2
∑

j=k

(

j
k

)

Ar
j +

(

r − 1
k

)

Ar
r−1 =

r−1
∑

j=k

(

j
k

)

Ar
j . �

By applying (2.6) to (2.23), we can easily prove the following lemma.

Lemma 2.1. Let n be a non-negative integer.

(2.27)

r+n−1
∑

j=k+n

( j
k + n

)

Ar
j−n(n) = Ar

k−1(n).

Remark 2.2. We can extend (2.27) for arbitrary integers if we use (2.27) to obtain a

polynomial in n, and then assign n the value of the desired negative integer.
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3. A BASIC INVERSION THEOREM

Theorem 2.1 allows us to offer an elegant proof of the following inversion
theorem. This theorem was stated without proof in [1].

Before we prove this inversion theorem, we need the following lemma.

Lemma 3.1.
r

∑

j=k+1

(

r
j

)

Aj
k = Ar+1

k .

Proof. Using (2.19), we see that
r

∑

j=k+1

(r
j

)

Aj
k =

r
∑

j=k+1

( r
r − 1

)

Aj
k =

r−k−1
∑

J=0

(r
J

)

Ar−J
k = Ar+1

k . �

Theorem 3.1. (Inversion Theorem)

(3.1) f(r) =

r−1
∑

j=0

Ar
jg(j), r ≥ 1

if and only if

(3.2) g(r) = f(r + 1) −
r

∑

j=1

(

r
j

)

f(j), with g(0) = f(1).

Proof. We begin by substituting (3.2) into the right hand side of (3.1).

f(r) =
r−1
∑

j=0

Ar
jg(j) =

r−1
∑

j=0

Ar
jf(j + 1) −

r−1
∑

j=1

j
∑

k=1

Ar
j

(

j
k

)

f(k)

=

r−1
∑

j=0

Ar
jf(j + 1) −

r−1
∑

k=1

f(k)

r−1
∑

j=k

Ar
j

(j
k

)

.

Notice that the inner sum of the second term is exactly (2.18), which we know is
true by Theorem 2.1. Hence, the preceding line becomes

f(r) =

r−1
∑

j=0

Ar
jf(j + 1) −

r−1
∑

k=1

f(k)Ar
k−1

= Ar
r−1f(r) +

r−2
∑

j=0

Ar
jf(j + 1) −

r−2
∑

k=0

Ar
kf(k + 1) = Ar

r−1f(r) = f(r),

since Ar
r−1 = 1.
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Next, we substitute (3.1) into (3.2).

g(r) = f(r + 1) −
r

∑

j=1

(

r
j

)

f(j) =
r

∑

j=0

Ar+1
j g(j) −

r
∑

j=1

(

r
j

)

j−1
∑

k=0

Aj
kg(k)

=

r
∑

j=0

Ar+1
j g(j) −

r−1
∑

k=0

g(k)

r
∑

j=k+1

(r
j

)

Aj
k

= g(r)Ar+1
r +

r−1
∑

j=0

Ar+1
j g(j) −

r−1
∑

k=0

g(k)Ar+1
k = g(r)Ar+1

r = g(r)

since Ar+1
r = 1. The equality connecting lines 2 and 3 comes from Lemma 3.1. �

4. SUMS INVOLVING A
r
j AND AN ARBITRARY POWER OF x

In [1], Section 7., we found an integral exponential generating function for
An

0 , namely,
∞
∑

n=0

An
0

xn

n!
= eex

−1

x
∫

0

e1−et

dt.

The goal of this section is to use (2.18) to define a new family of generating functions
involving the Ar

k. This new family is denoted
(

Sr(x)
)

∞

r=1
, where,

Sr(x) =

r−1
∑

j=0

Ar
jx

j .

We can find a functional equation involving Sr(x) by multiplying each side of (2.18)
by xk, and summing over k. In particular,

r−1
∑

k=1

Ar
k−1x

k =

r−1
∑

k=1

xk

r−1
∑

j=k

(

j
k

)

Ar
j

=

r−1
∑

j=1

j
∑

k=1

xk
(

j
k

)

Ar
j =

r−1
∑

j=1

Ar
j

( j
∑

k=0

xk
(

j
k

)

− 1

)

=

r−1
∑

j=1

Ar
j

(

(1 + x)j − 1
)

=

r−1
∑

j=1

Ar
j(1 + x)j −

r−1
∑

j=1

Ar
j .

Substituting (2.8) into the previous line proves the following lemma.

Lemma 4.1.

(4.1)
r−1
∑

j=0

Ar
j(1 + x)j − B(r) =

r−1
∑

j=1

Ar
j−1x

j .
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We now do some basic manipulations on (4.1) in order to form an equa-

tional relationship that will allow us to iteratively compute values for
r−1
∑

j=0

Ar
jx

j . In

particular, (4.1) implies

r−1
∑

j=0

Ar
j(1 + x)j = B(r) +

r−2
∑

j=0

Ar
jx

j+1 = B(r) +

r−1
∑

j=0

Ar
jx

j+1
− Ar

r−1x
r.

Since Ar
r−1 = 1, the above line becomes

(4.2)
r−1
∑

j=0

Ar
j(1 + x)j = B(r) + x

r−1
∑

j=0

Ar
jx

j − xr.

Thus, (4.2) becomes

(4.3) Sr(1 + x) = B(r) + xSr(x) − xr.

Our goal is to calculate the value of Sr(x) for x an arbitrary nonnegative integer.
If x = 0, (4.3) implies Sr(1) = B(r). When x = 1, (4.3) implies

Sr(2) = B(r) + Sr(1) − 1 = 2B(r) − 1.

By successively substituting various integer values of x into (4.3), we obtain the
following results.

Sr(3) = 5B(r) − 2 − 2r,

Sr(4) = 16B(r)− 6 − 3(2r) − 3r,

Sr(5) = 65B(r)− 24 − 4(3)2r − 4(3r) − 4r,

Sr(6) = 326B(r)− 120 − 5(4)(3)2r − 5(4)3r − 5(4r) − 5r.

Inspection of these equations implies the following lemma.

Lemma 4.2. Let Sr(x) =
r−1
∑

j=0

Ar
jx

j. Let k be a positive integer.

(4.4) Sr(k) = akB(r) −

k
∑

j=2

(k − 1)!

(j − 1)!
(j − 1)r,

where a1 = 1 and ak = 1 + (k − 1)ak−1.

Proof. Apply mathematical induction on k to (4.4). We leave the details of this
straightforward induction to the reader. �

By substituting the expression ak = 1 + (k − 1)ak−1 into itself k − 1 times,
we can easily obtain the following formula for an, namely,

(4.5) an =

n−1
∑

k=0

P (n − 1, k) =

n−1
∑

k=0

(n − 1)!

(n − 1 − k)!
.
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From (4.5), we are able to obtain an exponential generating function for the (an)∞n=1.

In particular, define A(x) =
∞
∑

n=0

an+1
xn

n!
. Then A(x) =

ex

1 − x
.

5. OPEN QUESTIONS

Clearly, the binomial recurrence coefficients Ar
j(n) provide a vast array of

results. In particular, we have shown that the Ar
j obey two different recurrence

relations

(5.1) Ar+1
j =

r−j−1
∑

i=0

(

r
i

)

Ar−i
j , 0 ≤ j ≤ r − 1,

and

(5.2) Ar
k−1 =

r−1
∑

j=k

(j
k

)

Ar
j .

An open research question is to investigate the connection between these two
seemingly different recurrence relations. We also leave the combinatorial meaning
of the Ar

j as fodder for future research.

Another open question involves the definition of
(

f(n)
)

∞

n=1
. Instead of defin-

ing f(n) by (1.1), we define f(n) by the nonlinear recurrence

(5.3) f(n + 1) =

n
∑

k=0

(

n
k

)

f(k)f(n − k), n ≥ a,

where a is a nonnegative integer. In [3], we investigated (5.3) for the case of a = 0
and showed that such sequences have connections to various aspects of cell growth
[4], [5]. Future research possibilities involve investigating (5.3) for a ≥ 1.

r/j 0 1 2 3 4 4 6 7 8 9
1 1
2 1 1
3 3 1 1
4 9 4 1 1
5 31 14 5 1 1
6 121 54 20 6 1 1
7 523 233 85 27 7 1 1
8 2468 1101 400 125 35 8 1 1
9 12611 5625 2046 635 175 44 9 1 1
10 69161 30846 11226 3488 952 236 54 10 1 1

Table 1: The Binomial Recurrence Coefficients Ar
j . The r runs vertically

while the j runs horizontally.
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