
Applicable Analysis and Discrete Mathematics, 1 (2007), 371–385.

Available electronically at http://pefmath.etf.bg.ac.yu

A LINEAR BINOMIAL RECURRENCE AND

THE BELL NUMBERS AND POLYNOMIALS

H. W. Gould, Jocelyn Quaintance

Let B(n) denote the nth Bell number. It is well known that B(n) obeys the
recurrence relation

(0.1) B(n + 1) =

n
∑

k=0

(

n

k

)

B(k), n ≥ 0.

The goal of this paper is to study arbitrary functions f(n) that obey (0.1),
namely,

(0.2) f(n + 1) =

n
∑

k=0

(

n

k

)

f(k), n ≥ 1.

By iterating (0.2), f(n + r) can be written as a linear combination of bi-
nomial coefficients with polynomial coefficients Ar

j(n), 0 ≤ j ≤ r − 1. The
polynomials Ar

j(n) have various interesting properties. This paper provides
a sampling of these properties, including two new ways to represent B(n) in
terms of Ar

j (n).

1. INTRODUCTION

Our Bell polynomials φn(t) are defined [1] by the generating function

(1.1) et(ex−1) =

∞
∑

n=0

φn(t)
xn

n!

and the Bell (or exponential) numbers are given by B(n) = φn(1). These num-
bers 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, ..., enumer-
ate the number of possible partitions of a set of n objects.

It is well known that

(1.2) φn(t) =

n
∑

k=0

S(n, k)tk, n ≥ 0,
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where S(n, k) are the Stirling numbers of the second kind. Moreover,

(1.3) φn+1(t) = t

n
∑

k=0

(

n

k

)

φk(t), n ≥ 0.

In particular, the Bell numbers satisfy the binomial recurrence

(1.4) B(n + 1) =

n
∑

k=0

(

n

k

)

B(k), n ≥ 0.

Our work here is motivated by the desire to iterate this expansion and deter-
mine the coefficients K(n, k, r) so that

(1.5) B(n + r) =

n
∑

k=0

K(n, k, r)B(k), n ≥ 0, r ≥ 0.

We will find that a more interesting set of results occurs when we relax the condition
n ≥ 0 in (1.3)–(1.4) and study the general binomial recurrence

(1.6) f(n + 1) =

n
∑

k=0

(

n

k

)

f(k), n ≥ 1,

where f(0) and f(1) are arbitrary initial values so that f(n) is uniquely determined
for n ≥ 1 by (1.6).

2. GENERAL EXTENSION OF RECURRENCE (1.6)

From (1.6), we have, by successive substitutions

f(n + 2) =

n+1
∑

k=0

(

n + 1
k

)

f(k) = f(n + 1) +

n
∑

k=0

(

n + 1
k

)

f(k)

=

n
∑

k=0

(

n

k

)

f(k) +

n
∑

k=0

(

n + 1
k

)

f(k) =

n
∑

k=0

(

(

n

k

)

+
(

n + 1
k

)

)

f(k);

f(n + 3) =

n+2
∑

k=0

(

n + 2
k

)

f(k) = f(n + 2) + (n + 2)f(n + 1) +

n
∑

k=0

(

n + 2
k

)

f(k)

=
n

∑

k=0

(

(n + 3)
(

n

k

)

+
(

n + 1
k

)

+
(

n + 2
k

)

)

f(k);

f(n + 4) =
n

∑

k=0

(

(n + 3)(n + 6)

2

(

n

k

)

+ (n + 4)
(

n + 1
k

)

)

f(k)

+

n
∑

k=0

(

(

n + 2
k

)

+
(

n + 3
k

)

)

f(k);
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and in general, we surmise that f(n+ r) may be written using a linear combination

of the binomial coefficients
(

n + j

k

)

, j = 0, 1, 2, . . . , r − 1, with coefficients being

polynomials in n. This we summarize in the following theorem.

Theorem 2.1. (Extension of the general binomial recurrence (1.6).) There exist

functions Ar
j (n), which are polynomials in n of degree r− 2− j when 0 ≤ j ≤ r− 2

and Ar
r−1(n) = 1, such that

(2.1) f(n + r) =

n
∑

k=0

r−1
∑

j=0

(

Ar
j(n)

(

n + j

k

)

)

f(k), r ≥ 1, n ≥ 1

where the A′s satisfy the recurrence relation

(2.2) Ar+1
j (n) =

r−j−1
∑

i=0

(

n + r

i

)

Ar−i
j (n), 0 ≤ j ≤ r − 1

and with Ar+1
r (n) = 1. We assume Ar

j(n) = 0 for j < 0 or j > r − 1.

Proof. We use induction. By successive substitutions, we have

f(n + r + 1) = f(n + r) +
(

n + r

1

)

f(n + r − 1) +
(

n + r

2

)

f(n + r − 2)

+ · · · +
(

n + r

r − 1

)

f(n + 1) +

n
∑

k=0

(

n + r

k

)

f(k).

By applying (2.1) to each term, we find

f(n + r + 1) =

n
∑

k=0

( r−1
∑

j=0

r−j−1
∑

i=0

(

n + r

i

)

Ar−i
j (n)

(

n + j

k

)

)

f(k) +

n
∑

k=0

(

n + r

k

)

f(k).

But we wish to have

f(n + r + 1) =
n

∑

k=0

( r
∑

j=0

(

n + j

k

)

Ar+1
j (n)

)

f(k),

so that by equating the coefficients of f(k), we find that (2.2) allows the induction
on r to go through. �

Table 9.1 gives some values of the Ar
j(n). Inspection of this table leads one

to suspect the following.

Theorem 2.2. The Ar
j(n) coefficients satisfy the relation

(2.3) Ar+1
j+1(n) = Ar

j(n + 1), j ≥ 1, r ≥ 0.
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Proof. We use (2.1) and the simple fact that (n + 1) + r = n + (r + 1). On the
one hand, we have

f(n + 1 + r) =

n+1
∑

k=0

( r−1
∑

j=0

(

n + 1 + j

k

)

Ar
j(n + 1)

)

f(k)

=
n+1
∑

k=0

( r
∑

j=0

(

n + j

k

)

Ar
j−1(n + 1)

)

f(k).

On the other hand, we have

f(n + 1 + r) =

n
∑

k=0

( r
∑

j=0

(

n + j

k

)

Ar+1
j (n + 1)

)

f(k),

so that by equating the coefficients of f(k), we have Ar
j−1(n+1) = Ar+1

j (n), which
we restate at (2.3). �

From this relation, we see that if we compute Ar
0(n) using (2.2), we may then

compute diagonally down the table to find all the other A′s. This is how we found
A7

1(n), since it is equal to A6
0(n + 1).

We end this section by stating an explicit formula for f(n + 1) in terms of
the two initial values of f(0) and f(1). This result, which we state as Corollary
2.1, is the basis for the results given in Sections 8 and 9. To prove Corollary 2.1,
we simply let n = 1 in (2.1) and rename r as n.

Corollary 2.1. Let f(n) be defined by recursion (1.6). Then

(2.4) f(n + 1) = f(0)
n−1
∑

j=0

An
j (1) + f(1)

n−1
∑

j=0

(j + 1)An
j (1), r ≥ 1

Remark 2.1. In view of (2.3), we can rewrite (2.4) as

f(n + 1) = f(0)
n−1
∑

j=0

A
n+1

j+1 (0) + f(1)
n−1
∑

j=0

(j + 1)An+1

j+1 (0), r ≥ 1

3. GENERALIZING THE NUMBER OF INITIAL CONDITIONS

We have assumed that (1.6) held for all n ≥ 1. For the Bell numbers, it
holds for all n ≥ 0. It is natural to ask what we can say when we only assume that
(1.6) holds for all n ≥ a, where a is a non-negative integer, and f(0), f(1), . . . , f(a)
are prescribed values. It is easy to see that we have the following result, which is
a generalization of Theorem 2.1 and Corollary 2.2.

Theorem 3.1. Let f(0), f(1), . . . , f(a) be prescribed values and let

(3.1) f(n + 1) =

n
∑

k=0

(

n

k

)

f(k), n ≥ a,
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where a ≥ 0 is any given integer. Then,

(3.2) f(n + r) =

n
∑

k=0

( r−1
∑

j=0

Ar
j(n)

(

n + j

k

)

)

f(k), r ≥ 1, n ≥ a

where the A coefficients are the same as in Theorem 2.1. Moreover, by letting n = a

in (3.2) and then renaming r as n, we note

(3.3) f(n + a) =
a

∑

k=0

( n−1
∑

j=0

An
j (a)

(

a + j

k

)

)

f(k), n ≥ 1.

Example. With a = 2, Equation (3.3) implies that f(n + 2) = C(n)f(0) + D(n)f(1) +
E(n)f(2), where for n ≥ 1,

C(n) =
n−1
∑

j=0

A
n
j (2), D(n) =

n−1
∑

j=0

(2 + j)An
j (2), E(n) =

n−1
∑

j=0

(2 + j)(1 + j)

2
A

n
j (2).

4. BELL NUMBERS

If we take f(n) = B(n), then, as we noted in the introduction, relation (1.6)
is valid for all n ≥ 0. Thus, (2.1) becomes

(4.1) B(n + r) =

n
∑

k=0

( r−1
∑

j=0

Ar
j(n)

(

n + j

k

)

)

B(k), r ≥ 1, n ≥ 0.

Setting n = 0 in (4.1), we get the explicit formula,

(4.2) B(r) =

r−1
∑

j=0

Ar
j(0), r ≥ 1.

This affords a new representation of the Bell numbers using the array of A coef-
ficients. Thus, we can use the row sums Table 9.2 to obtain the Bell Numbers,
since the nth row sum is the nth Bell number. We have been unable to find this
result in the literature and should note that rows and diagonals of the array of
Ar

j(0) numbers are conspicuously absent from the Online Encyclopedia of Integer
Sequences (OEIS). We have entered the sequence Ar

0(0), denoted A(r), as A040027
in OEIS, where one can now find references to other manifestations of this sequence.

A useful simplification of (2.4) by way of (4.2) is as follows:

Corollary 4.1. Let f(n) satisfy (1.6). Then for all r ≥ 1,

(4.3) f(r) = f(0)(B(r) − A(r)) + f(1)A(r).

In fact, Equation (2.4) holds for all r ≥ 0 if we define A(0) = 0.
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Proof. We have from (2.4)

f(r + 1) = f(0)
r−1
∑

j=0

Ar
j(1) + f(1)

r−1
∑

j=0

(j + 1)Ar
j(1)

= f(0)

r−1
∑

j=0

Ar+1
j+1(0) + f(1)

r−1
∑

j=0

(j + 1)Ar+1
j+1(0), by (2.3)

= f(0)

r
∑

j=1

Ar+1
j (0) + f(1)

r
∑

j=0

(j)Ar+1
j (0)

= f(0)(B(r + 1) − A(r + 1)) + f(1)

r
∑

j=0

(j)Ar+1
j (0), by (4.2) (∗)

Since for the Bell numbers f(0) = f(1) = 1 and f(r + 1) = B(r + 1), we must
have

(4.4)

r
∑

j=1

jAr+1
j (0) = A(r + 1).

Substituting (4.4) into (∗) proves the desired result. �

Remark. Another interesting formula, whose proof is an adaptation of the methodology
used for Corollary (4.1), is

r−1
∑

j=1

j
2
A

r
j(0) = A(r) + 2A

r
1(0).

In a later paper we will discuss the series
r−1
∑

j=1

jpAr
j(0).

We are next able to offer another remarkable formula for the Bell numbers.
This formula is given in Corollary 4.2.

Corollary 4.2. Let B(n) be the nth Bell number. Then

(4.5) B(n) = An+1
0 (−1), n ≥ 0.

Proof. In (2.2), set j = 0, n = −1, and then replace r by r + 1. We get

Ar+2
0 (−1) =

r
∑

i=0

(

r

i

)

Ar+1−i
0 (−1) =

r
∑

i=0

(

r

r − i

)

Ai+1
0 (−1),

so that we have

(4.6) Ar+2
0 (−1) =

r
∑

i=0

(

r

i

)

Ai+1
0 (−1), with A1

0(−1) = 1.
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We know from (1.4) that the Bell numbers B(n) satisfy

B(r + 1) =

r
∑

i=0

(

r

i

)

B(i), n ≥ 0,

being the unique solution of this with B(0) = 1, whence Ai+1
0 (−1) must be identical

to B(i). �

Remark 4.2. By applying (2.3) to (4.5) we obtain

B(n − j) = A
n
j−1(−1), n ≥ j ≥ 1.

We propose calling the Ar
j(n) Binomial Recurrence Coefficients. Undoubt-

edly, they possess other remarkable properties, intimately associated with the Bell

Numbers. The remaining sections of this paper expound on the various properties
of the Binomial Recurrence Coefficients.

5. BELL POLYNOMIALS

We wish to next indicate how we can extend the concept of the Binomial
Recurrence Coefficients to expansions of the Bell polynomials. If we suppose that

(5.1) φn+1(t) = t

n
∑

k=0

(

n

k

)

φk(t), n ≥ 0,

and iterate the relation, we find

Theorem 5.1. There exist coefficients Ar
j(n, t) such that

(5.2) φn+r(t) =

n
∑

k=0

( r−1
∑

j=0

Ar
j(n, t)

(

n + j

k

)

)

φk(t), n ≥ 0, r ≥ 1,

with a recurrence relation parallel to (2.2), which is

(5.3) Ar+1
j (n, t) = t

r−j−1
∑

i=0

(

n + r

i

)

Ar−i
j (n, t), 0 ≤ j ≤ r − 1

and with Ar+1
r (n, t) = 1. Also we assume Ar

j(n, t) = 0 for j < 0 or j > r − 1.

The formula corresponding to (2.3) is

(5.4) Ar+1
j+1(n, t) = Ar

j(n + 1, t), j ≥ 0, r ≥ 0.

Equation (4.2) extends to

(5.5) φr(t) =
r−1
∑

j=0

Ar
j(0, t), r ≥ 1.
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Here are examples of (5.2) for r = 2, 3, and 4:

φn+2(t) =
n

∑

k=0

φk(t)

(

t2
(

n

k

)

+ t
(

n + 1
k

)

)

,

φn+3(t) =

n
∑

k=0

φk(t)

(

(

t3 + (n + 2)t2
)

(

n

k

)

+ t2
(

n + 1
k

)

+ t
(

n + 2
k

)

)

,

φn+4(t) =
n

∑

k=0

φk(t)

(

(

t4 + (2n + 5)t3 +
(n + 2)(n + 3)

2
t2

)(

n

k

)

)

+

n
∑

k=0

φk(t)

(

(

t3 + (n + 3)t2
)

(

n + 1
k

)

+ t2
(

n + 2
k

)

+ t
(

n + 3
k

)

)

.

Evidently one may prove also that Ar
j(n, t) is a polynomial of degree r in t. We

shall name them Binomial Recurrence Polynomials.

6. INVERSE SERIES RELATIONS

We can learn more about the array of coefficients Ar
j(n) by looking at inverse

series relations. We announce the following result whose proof we omit:

Theorem 6.1.

(6.1) f(r) =
r−1
∑

j=0

Ar
j(0)g(j), r ≥ 1

and only if

(6.1) g(r) = f(r + 1) −

r
∑

j=1

(

r

j

)

f(j), with g(0) = f(1).

From this point of view, the array Ar
j(0) arises as the inverse of the simple

binomial matrix

M =





















1 0 0 0 0 0 ...

−1 1 0 0 0 0 ...

−2 −2 1 0 0 0 ...

−3 −3 −1 1 0 0 ...

−4 −6 −4 −1 1 0 ...

−5 −10 −10 −5 −1 1 ...

... ... ... ... ... ... ...





















.

Theorem 6.1 reveals how the array Ar
j(0) comes from the inversion of the Bell

number recurrence (1.4). Indeed, set g(j) = 1 identically. Then (6.1) becomes our
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earlier Bell number formula (4.2), where now f(r) = B(r); by (6.2), the inverse is

1 = B(r + 1) −

r
∑

j=1

(

r

j

)

B(j).

In as much as B(0) = 1, this just becomes

B(r + 1) =

r
∑

j=1

(

r

j

)

B(j),

which is exactly (1.4). Thus, we may think of (4.2) as an inverse of the classical
(1.4).

Here is another instructive example of Theorem 6.1. We choose f(j) = (−1)j .
Then, Theorem 6.1 yields

(6.3) Ar
0(0) = (−1)r−1 + 2

∑

1≤2j−1≤r−1

Ar
2j−1(0),

and since Ar
r−1(0) = Ar

r−2(0) = 1, we may rewrite this as

(6.4) Ar
0(0) = 1 + 2

∑

1≤2j−1<r−1

Ar
2j−1(0).

Equation (6.4) provides a useful check of rows in Table 9.1.

Relation (6.3), or (6.4), gives immediate proof that A(r) is odd for all r ≥ 1.

Combining (6.3) with (4.2), we find the Bell number formula

(6.5) 2B(r) = A(r) + (−1)r + 2
∑

0≤2j≤r−1

Ar
2j(0),

which we may rewrite as

(6.6) 2B(r) = 3A(r) + (−1)r + 2
∑

1≤j≤(r−1)/2

Ar
2j(0).

From (6.5) and (4.2) we find the formula

(6.7)

r−1
∑

j=0

(−1)jAr
j(0) = B(r) − A(r) − (−1)r, r ≥ 1.

We close this section by noting an unusual binomial identity that flows from the

inverse series relation pair (6.1)-(6.2). Choosing f(r) =
(

x

r − 1

)

. Relations (6.1)

and (6.2) show that g(r) =
(

x

r

)

−
(

x + r

r − 1

)

. We then obtain the identity

(6.8)

r−1
∑

j=0

Ar
j(0)

(

x

j

)

=
(

x

r − 1

)

+

r−1
∑

j=0

Ar
j(0)

(

x + j

j − 1

)

, r ≥ 1.
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7. GENERATING FUNCTIONS

For the general case governed by (1.6), we develop the exponential generating
function for f(n). We have

F (x) =

∞
∑

n=0

f(n)
xn

n!
= f(0) + f(1)x +

∞
∑

n=1

f(n + 1)
xn+1

(n + 1)!

= f(0) + (f(1) − f(0))x +

∞
∑

n=0

n
∑

k=0

(

n

k

)

f(k)
xn+1

(n + 1)!

= f(0) +
(

f(1) − f(0)
)

x +

x
∫

0

∞
∑

n=0

n
∑

k=0

(

n

k

)

f(k)
tn

n!
dt

= f(0) +
(

f(1) − f(0)
)

x +

x
∫

0

∞
∑

k=0

∞
∑

n=0

tn

n!
f(k)

tk

k!
dt

= f(0) +
(

f(1) − f(0)
)

x +
x
∫

0

etF (t) dt,

whence, we have the differential equation

(7.1) F ′(x) = f(1) − f(0) + exF (x),

which is easily solved using the integrating factor exp(−ex + 1), so that, we obtain
the general solution

F (x) =
(

f(1) − f(0)
)

eex−1
x
∫

0

e−et+1 dt + Ceex−1.

Letting x = 0, we find C = f(0), and obtain the specific solution

(7.2) F (x) =
(

f(1) − f(0)
)

eex−1
x
∫

0

e1−et

dt + f(0)eex−1.

By (4.3) we have

f(n) = f(0)B(n) +
(

f(1) − f(0)
)

A(n), n ≥ 0,

so that

∞
∑

n=0

f(n)
xn

n!
= f(0)

∞
∑

n=0

B(n)
xn

n!
+

(

f(1) − f(0)
)

∞
∑

n=0

A(n)
xn

n!
,

which is to say

F (x) = f(0)eex−1 +
(

f(1) − f(0)
)

∞
∑

n=0

A(n)
xn

n!
,
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and comparing this with (7.2), we find that

(7.3)

∞
∑

n=0

A(n)
xn

n!
= eex−1

x
∫

0

e1−et

dt,

which gives an integral generating function for the sequence A(n). This may be
expanded for as many terms as one likes, since the coefficients in the expansion
of exp(ex − 1) use the Bell numbers, and the coefficients in the expansion of
exp(1− ex) are well-known. For the former see sequence M1484 in Sloane [4] and
for the latter see sequence M1913 in [4]. Further detailed references may be found
in Gould [2]. To show some details, write

(7.4) e1−ex

=

∞
∑

n=0

D(n)
xn

n!
.

The first seventeen D′s (as tabulated in [5]) are as follows: 1, −1, 0 1, 1,

−2, −9 − 9, 50, 267, 413, −2180, −17731, −50533, 110176, 1966797, 9938669.
Sloane’s printed book [4] only gives the absolute values. A known infinite se-
ries formula for these is

(7.5) D(n) = e

∞
∑

k=0

(−1)k kn

k!
,

just as

(7.6) B(n) =
1

e

∞
∑

k=0

kn

k!

which is known as Dobinski’s formula.

The D′s satisfy a recursion similar to (1.4), but with a minus sign inserted
in front. In fact, from (5.1) with t = −1,

(7.7) D(n + 1) = −
n

∑

j=0

(

n

j

)

D(j),

which allows for easy computation of them. Using the D′s and carrying out the
integration in (7.3), and multiplying by (1.1) with t = 1 there, one can easily
multiply the resulting series and recover as many terms of the sequence A(n) as
desired. For n = 0, 1, 2, . . . this yields 0, 1, 1, 3, 9, 31, 121, 523, 2469, . . . as expected.

Another known way [5] to relate the B and D sequences is the formula ex-
pressing their reciprocal relationship

(7.8)

n
∑

k=0

(

n

k

)

B(k)D(n − k) = δn
0 .
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Now as a matter of fact, we can obtain an explicit formula for the A coeffi-
cients, by recalling (1.1) and (7.3). Substituting the generating functions, carrying
out the integration, and simplifying, we get from (7.3) the very nice formula

(7.9) A(n + 1) =

n
∑

k=0

(

n + 1
k + 1

)

B(n − k)D(k), n ≥ 0.

Since

φn(1) = B(n) =
n
∑

k=0

S(n, k)

and

φn(−1) = D(n)
n
∑

k=0

(−1)kS(n, k),

we could then write a more complicated formula giving the A(r) coefficients using
Stirling numbers of the second kind and binomial coefficients.

8. OPEN QUESTION: A LIMIT CONJECTURE

We end this paper by comparing the Bell number sequence {B(n)}∞n=0 to the
sequence {f(n)}∞n=0, where f(n) obeys (1.6). This analysis leads to a conjecture,
whose proof we leave as an open research question. Corollary 4.1 implies that

f(n) =
(

B(n) − A(n)
)

f(0) + A(n)f(1)

B(n) =
(

B(n) − A(n)
)

B(0) + A(n)B(1).

Since both f(n) and B(n) have similar structure, it is natural to look at the ratio
between these two terms in the form

(8.1) lim
n→∞

f(n)

B(n)
.

A particular example of (8.1) is when f(0) = 1, and f(1) = 3. In this case,
{f(n)}∞n=0 is 1, 3, 4,11, 33, 114, 445, 1923, 9078, 46369, 254297, 148796, . . .. Note
that, f(n) = B(n) + 2A(n) and the value of (8.1) is 2.1926 . . . . In general, since
B(0) = 1 = B(1), (8.1) can be rewritten as follows:

(8.2) lim
n→∞

f(n)

B(n)
= f(0) +

(

f(1) − f(0)
)

L,

where

(8.3) L = lim
n→∞

A(n)

B(n)
.

Thus, lim
n→∞

f(n)

B(n)
if and only if lim

n→∞

A(n)

B(n)
exists. Empirical evidence, via a Maple

computer program, suggest the following
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Conjecture 8.1.

lim
n→∞

A(n)

B(n)
=

∞
∫

0

e−u

1 + u
du = −eEi(−1).

Remark 8.1. Recall that −eEi(−1) = 0.59634736232319407434107849..., which is known

as Gompertz constant. See A040027 in OEIS, with reference to E. Weisstein’s World

of Mathematics.

To gain some insight about Conjecture 8.1, note that (7.3) may be rewritten
in the following form

(8.4)

∞
∑

n=0

A(n)
xn

n!
=

∞
∑

n=0

B(n)
xn

n!

x
∫

0

e1−et

dt,

so that

(8.5)

∞
∑

n=0
A(n)

xn

n!
∞
∑

n=0
B(n)

xn

n!

=

x
∫

0

e1−et

dt.

We observe next that
∞
∫

0

e−u

1 + u
du =

∞
∫

1

e1−t

t
dt =

∞
∫

0

e1−ex

ex

ex
dx =

∞
∫

0

e1−ex

dx,

so that relation (7.3) leads to

(8.6) lim
x→∞

∞
∑

n=0
A(n)

xn

n!
∞
∑

n=0
B(n)

xn

n!

=

∞
∫

0

e−u

1 + u
du.

By combining Conjecture 8.1 with (8.6) we observe that

(8.7) lim
x→∞

∞
∑

n=0
A(n)

xn

n!
∞
∑

n=0
B(n)

xn

n!

= lim
n→∞

A(n)

B(n)
,

which is a kind of extended l’Hospital Rule.

For finite degree polynomials, we know that

(8.8) lim
x→∞

n
∑

k=0

A(k)
xk

k!
n
∑

k=0

B(k)
xk

k!

=
A(n)

B(n)
.
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However, only under special conditions could (8.8) hold when we allow n → ∞.
Finding necessary and sufficient conditions are what is needed to prove Conjecture
8.1. We suspect that when the functions defined by the series in (8.8) are doubly
exponential in nature, like exp(et − 1), as in the case of the Bell numbers, then
we might expect (8.8) to be true.

9. TABLES

Table 9.1: Some Values of A
r
j (n) Polynomials

• A1
0(n) = 1, A2

0(n) = A2
1(n) = 1, A3

0(n) = n + 3, A3
1(n) = A3

2(n) = 1,

• A4
0(n) =

(n + 3)(n + 6)

2
, A4

1(n) = n + 4, A4
2(n) = A4

3(n) = 1,

• A5
0(n) =

(n + 3)(n2 + 18n + 62)

6
, A5

1(n) =
(n + 4)(n + 7)

2
, A5

2(n) = n + 5,

• A5
3(n) = A5

4(n) = 1, A6
0(n) =

(n + 3)(n3 + 43n2 + 386n + 968)

24
,

• A6
1(n) =

(n + 4)(n2 + 20n + 81)

6
, A6

2(n) =
(n + 5)(n + 8)

2
, A6

3(n) = n + 6,

• A6
4(n) = A6

5(n) = 1, A7
0(n) =

(n + 3)(n4 + 97n3 + 1684n2 + 10328n + 20920)

120
,

• A7
1(n) =

(n + 4)(n3 + 46n2 + 475n + 1398)

24
, A7

2(n) =
(n + 5)(n2 + 22n + 102)

6
,

• A7
3(n) =

(n + 6)(n + 9)

2
, A7

4(n) = n + 7, A7
5(n) = A7

6(n) = 1

Table 9.2: Array of A
r
j (0) Coefficients

1
1 1

3 1 1
9 4 1 1

31 14 5 1 1
121 54 20 6 1 1

523 233 85 27 7 1 1
2469 1101 400 125 35 8 1 1

12611 5625 2046 635 175 44 9 1 1
69161 30846 11226 3488 952 236 54 10 1 1

Remark 9.1. For this and all ensuing tables, rows correspond to r = 1, 2, 3, . . . and

diagonals to j = 0, 1, . . . , r − 1. Note that the row sums are the Bell numbers.
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Table 9.3: Array of A
r
j (1) Coefficients

1
1 1

4 1 1
14 5 1 1

54 20 6 1 1
233 85 27 7 1 1

1101 400 125 35 8 1 1
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