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ON TYPES, FORM AND SUPREMUM OF THE

SOLUTIONS OF THE LINEAR DIFFERENTIAL

EQUATION OF THE SECOND ORDER WITH

ENTIRE COEFFICIENTS

Dragan Dimitrovski, Miloje Rajović, Rade Stojiljković

Some new, basically combined classical procedures for qualitative analysis of
the equation

y
′′ + a (x) y

′ + b (x) y = 0,

if a (x) and b (x) are continuously differentiable coefficients, are given in this
paper, in the sense of general form of the solution, integral equations for the
forms of the solution and estimation of the supremum of the solution.

The aim of this paper is to show that the variety of solutions of the very
important differential equation

(1) y′′ + a (x) y′ + b (x) y = 0,

if the coefficients are entire on the semi-infinite line [0, +∞), is very small and that
the solutions are actually divided into two distinct classes: the first class include
monotonous solutions of exponential type, the second class comprise oscillating
functions, taken into account generally, very similar to ordinary sinx and cosx.

The huge variety of the solutions of equation (1), well-known from the Theory
of Special Functions, is in most cases a consequence of singularities of the coefficients
a (x) and b (x) as well as the leading coefficient, A (x), in the formula (1.A) at the
end of the paper.

The famous thought of the great analyst Gurs: “Give me singularities and I
will tell you about the function” is confirmed by this.

There are two basic classes of solutions of equation (1) with entire coefficients:
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I. Monotonous solutions in the form of generalized hyperbolic functions

cosh(a,b) x and sinh(a,b) x

II. Oscillating solutions in the form of generalized trigonometric functions

sin(a,b) x and cos(a,b) x

By the iterative method basic existential and numerical approaches are given
by means of sums - iterations.

We specially emphasize integral equations for equation (1), with possibility
for a priori estimation of the supremum of the solution.

It is known ([4], [6], see also [3], [5], [7]) that the equation (1) is, by the
substitution of the function

(2) y = e
−

1
2

∫

a (x) dx
· z,

transformed to the canonical form of a second order equation (3),

(3) z′′ = f (x) z,

which has only a single coefficient, f (x), which depends on a (x) and b (x) and is
given by:

(4) f (x) =
a2 (x)

4
+

a′ (x)

2
− b (x) .

Furthermore it is also known [3] that the substitution

(5) z′ = u · z

transforms (3) to the Riccati nonlinear equation of the first order,

(6) u′ + u2 = f (x) .

The latter form is also canonical and includes the same coefficient f (x) with
no change [3]. From (6) there is

u2 = f (x) − u′

with the presumption f (x) > 0 . (If f (x) < 0, the procedure is similar, but there
is a need to consider u′ < 0 in that case).

In order to have real solutions of equation (6) in terms of u the basic inequality
f (x) − u′ ≥ 0 must be fulfilled as well. This implies

(7) u′ (x) ≤ f (x) .

This is the basis tool for the estimation of type and supremum of all the
equations, by means of the method we have not yet seen in the literature.
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Since equation (1) has two arbitrary coefficients, a (x) and b (x), we make the
following presumption for the coefficients: a (x) and b (x) are continuously differen-
tiable on [0, +∞). Since the solutions theoretically include two arbitrary integra-
tion constants, C1 and C2, which may not remain undetermined with estimations
– because of the estimations are irrelevant at case – the best way to approach the
problem is to divide the procedure into several phases starting with some basic but
important results:

The first special case: the equality in (7)

It is shown that this case, although known from before, is very important for
further estimations.

In (6) let u′ = f (x); from (6) this implies that u2 = 0 , i.e. the equality

(8) u = 0

From (5) u =
z′

z
it follows that z′ = 0 and from (2) we get the solution of

equation (1)

y = C exp
(

−
1

2

∫

a (x) dx
)

.

Equation (6) also implies that f (x) = 0, i.e. according to (4) there is a
relation between the coefficients. So that b (x) depends on a (x) as

(9) b (x) =
a2 (x)

4
+

a′ (x)

2
.

So from (3) it follows that z (x) is trivial, being defined from

(10) z′′ = 0, i.e. z = C1x + C2,

and from (2) a general solution of the equation (1) is obtained

(11) y (x) = (C1x + C2) e
−

1
2

∫

a (x) dx
,

a common yet important boundary result. The constants C1 and C2 are determined
from the initial conditions: y (0) and y′ (0) . Thus we have

C2 = y (0) and C1 = y′ (0) +
a (0)

2
y (0)

and the solution is

(12) y (x) =
((

y′

0 +
a0

2
y0

)

x + y0

)

e
−

1
2

∫

a (x) dx
.

From the latter a simple estimation for the solutions in the interval [0, x] implies:

y (x) <
( ∣

∣

∣
y′

0 +
a0

2
y0

∣

∣

∣
x + |y0|

)

e
−

1
2

∫

mina (x) dx
.
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The conclusion is that the sign of the coefficient a (x) is of crucial importance
for the behavior of the solution y (x).

1◦ If a (x) < 0, then

−
1

2

x
∫

0

a (x) dxdy <
1

2
max |a (x)|

and the estimation is

y (x) < |C1x + C2| e
x
2

max a (x)
, x ∈ [0, x]

2◦ if a (x) > 0 the solutions is bounded, and

y (x) < |C1x + C2| e
−

x
2

mina (x)

i.e., there is also an asymptotic behavior of the solution: y (x) → 0, x → ∞.

We obtained a trivial but bounding and determining result:

Theorem 1. Differential equation (1), in which b (x) depends on a (x) as in (9),
namely

y′′ + a (x) y′ +

(

a2 (x)

4
+

a′ (x)

2

)

y = 0,

has the general solution, (11), and in respect to initial conditions, y (0) and y′ (0) ,

the form of the solution is (12); the estimations and asymptotic behaviors given in

(12, 1◦) and (12, 2◦) are possible.

The second special case

Let b (x) depend on a (x) and the derivative, a′ (x) , but not explicitly:

(13) b (x) =
a2 (x)

4
.

Then there is the special equation (1) with only one variable function a (x),

(14) y′′ + a (x) y′ +
a2 (x)

4
y = 0,

in which case the coefficient in the equation (3) is f (x) =
a′ (x)

2
and (3) transforms

to

(15) z′′ =
a′ (x)

2
z.
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The first general case

If a (x) > 0, i.e., a (x) increases monotonically, then it is known that (15)
determines classes of exponential solutions for z (x) and (according to (2)) y (x)
(see [2]). Two integrations in (15) give the integral form

(16) z (x) = C1x + C2 +
1

2

x
∫

0

x
∫

0

a′ (x) z (x) dx2

from which, through iterations, we obtain

z (x) = C1

(

x +
1

2

x
∫

0

x
∫

0

xa′ (x) dx2 +
1

22

x
∫

0

x
∫

0

a′ (x)
x
∫

0

x
∫

0

xa′ (x) dx4 + · · ·

)

+C2

(

x +
1

2

x
∫

0

x
∫

0

a′ (x) dx2 +
1

22

x
∫

0

x
∫

0

a′ (x)
x
∫

0

x
∫

0

xa′ (x) dx4 + · · ·

)

,

where, because of a′ (x) > 0, the members of the sum of iterations in the form of
multiple integrals monotonically increase and the sums above determine nonelemen-

tary hyperbolic functions with basis

√

a′ (x)

2
. The sums are symbolically denoted

as
z (x) = C1 sinh

√

a′ (x) /2
x + C2 cosh

√

a′ (x)/2
x.

The corresponding solution of the equation (1) is

(17) y (x) = e
−

1
2

∫

a (x) dx
(

C1 sinh
√

a′ (x) /2
x + C2 cosh

√

a′ (x) /2
x

)

.

Theorem 2. Equation (14), where a (x) is a continuously differentiable coefficient

with the feature a′ (x) > 0, has a solution in the form of fast rising sum defining

hyperbolic functions (17), in which for a finite x a upper bound could be determined

in [0, x] , dependent on minima or maxima of the functions a (x) and a′ (x) ; it has

the feature

y (x) → ∞, x → ∞.

The second general case

Much more important, yet more difficult to analyze, is the case when in (15)
a′ (x) < 0, i.e., if we put

(18)
a′ (x)

2
= −F (x) ,

where F (x) > 0 and recall the well-known theorem on existence of oscillating
solutions which states: If in the equation z′′ + F (x) z = 0

1◦ F (x) > 0 and 2◦
+∞
∫

0

F (x) dx diverges,
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then all of its solutions are oscillating.

In our case it is:

1◦ F (x) = −
a′ (x)

2
> 0 by presumption, and

2◦
+∞
∫

0

F (x) dx = −
+∞
∫

0

a′ (x)

2
dx = −

1

2
a (x)|

+∞

0 =
1

2

(

a (0) − a (∞)
)

= ∞.

Thus the conditions are met and the equation has only oscillating solutions.
If the equation is written in the normal form

z′′ = −F (x) , F (x) > 0,

then in the form of an integral equation

z (x) = C1x + C2 −
x
∫

0

x
∫

0

F (x) z (x) dx2

in which the iterations alter sign consecutively, writing

z (x) = C1

(

x −
x
∫

0

x
∫

0

xF (x) dx2 +
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

xF (x) dx4

−
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

xF (x) dx6 + · · ·

)

+ C2

(

1 −
x
∫

0

x
∫

0

F (x) dx2 +
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

F (x) dx4

−
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

F (x) dx6 + · · ·

)

.

It has been proved [1] that the iterations determine a second – order trigonom-
etry by means of basis generalized trigonometric functions, called generalized sine
with base F (x) and generalized cosine with base F (x).

coshF (x) x = 1 −
x
∫

0

x
∫

0

F (x) dx2 +
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

F (x) dx4(21)

−
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

F (x) dx6 + · · ·

sinhF (x) x = x −
x
∫

0

x
∫

0

xF (x) dx2 +
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

xF (x) dx4(22)

−
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

F (x)
x
∫

0

x
∫

0

xF (x) dx6 · · · ,

i.e., there is the solution

(21) z (x) = C1 sinhF (x) x + C2 coshF (x) x.
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Consequently the general solution to the equation (1) is

(22) y (x) = e
−

1
2

∫

a (x) dx(

C1 sinhF (x) x + C2 coshF (x) x
)

.

Theorem 3. The equation (13), in which a (x) has the feature a′ (x) < 0 ( i.e.

a (x) monotonically decreases), has oscillating solutions in the form (22).

Since the similarity of the generalized trigonometric functions to the ordinary
sine and cosine could be shown by means of the iteration method in the sums (19)
and (20), with the argument x

√

F (x) instead, i.e., the following relations can be
derived

(23) cosF (x) x ≈ cos
(

x
√

F (x)
)

and sinF (x) x ≈ sin
(

x
√

F (x)
)

,

the function (21) is bounded and the integral (22), in which a (x) monotonously
decreases, converges to zero.

Theorem 4. Equation (14), when x → ∞, allows the following asymptotic be-

haviour of the solutions :

- if a′ (x) > 0, then every solution is unbounded and monotonic,

- if a′ (x) < 0, then every solution converges to zero and is oscillating,

- if a′ (x) = 0, i.e. a (x) = Const, then the solutions are y = e−C/2 (C1x + C) ,

and there are both monotonic and nonmonotonic, as well as both bounded and un-

bounded solutions. (This is the consequence of the fact that characteristic equation

for y′′ + Cy′ +
C2

4
y = 0 reads r2 + Cr +

C2

4
r = 0, and has a double root r = −

C

2
.

Thus the asymptotic is dependent on the sign of the constant C).

The third case. Estimation of the solutions

Let there now be no special restrictions in the form of rigid relations between
the coefficients a (x) and b (x).

Then, beside (1), the following is valid as well u2 = f (x) − u′ > 0 (the case
u2 = 0 has been analyzed in the first case). Therefore, let there be the strict
inequality u′ < f (x) .

Since the solving of differential inequalities by means of integrating the left
and the right side makes a lot of difficulties, beside the determination of the con-
stants. For the latter differential inequality we substitute the differential equation

(24) u′ = f (x) − ε (x) ,

where ε (x) is an unknown function (also dependent on u (x) ), yet for which is
known that: 1◦ ε > 0 (i.e. ε = u2 ); 2◦ ε (x) is a supplement for u′ (x) , for it to
reach f (x) . From (24) implies the integration

u =
x
∫

0

(

f (x) − ε (x)
)

dx + C1,
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where C1 = u (0) =Const. Since (4) is valid for f (x), hence

u =

x
∫

0

(

a2

4
+

a′

2
− b − ε (x)

)

dx + u0

and, according to (5), we get a new differential equation with regard to the func-
tion z

z′

z
=

x
∫

0

(

a2

4
+

a′

2
− b − ε (x)

)

dx + u0.

After integration we get

(25) ln z =

x
∫

0

x
∫

0

(

a2

4
+

a′

2
− b − ε (x)

)

dx2 + u0x + C2

Since from (2) it follows that z = y e
1
2

∫

a (x) dx
, we get

y · e
1
2

∫

a (x) dx
= e

u0x + C2
· e

x
∫

0

x
∫

0

(f (x) − ε (x)) dx2

where C2 is obtained from (25) substituting x = 0 and ln z0 = C2; with regard to
(2) we have C2 = ln y (0). Now we get

y = e
−

1
2

∫

a (x) dx
· e

u0x + ln y0 +
x
∫

0

x
∫

0

(f (x) − ε (x)) dx2

,

where, if we replace f (x) with its value (4), it remains

(26) y (x) = y0 · e
u0x +

x
∫

0

x
∫

0

(

a2(x)
4

− b (x) − ε (x)
)

dx2

.

Since u =
z′

z
and z′ = y′e

1
2

∫

a (x) dx
+

a (x)

2
ye

1
2

∫

a (x) dx
,

u =
y′

y
+

a (x)

2
and u0 =

y′

0

y0
+

a0

2
.

For the solution of (1) we get integral expression

(27) y (x) = y0 · e

(

y′

0

y0

+ a0

2

)

+
x
∫

0

x
∫

0

(

a2(x)
4

− b (x) − ε (x)
)

dx2

,

where the solution of (1) is given in the form (27) with one undetermined element,
and in the function of all other determined and known elements

(28) a (x) , b (x) y0, y′

0.
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The solution (27) is suitable for a qualitative analysis. This way, the following
is formulated:

Theorem 5. Every solution of the linear homogeneous differential equation of the

second order (1) with continuously differentiable coefficients a (x) and b (x) could

be expressed through exponential integral form (27).

If we denote K a constant composed of given and known values a (0) , y (0) , y′ (0):

K =
y′

0

y0
+

a (0)

2
and always

a2

4
> 0 and ε > 0, the following estimations of the gen-

eral solution (27) are obtained

(29) y0 · e
kx −

x
∫

0

x
∫

0

(

b (x) + ε2 (x)
)

dx2

≤ y (x) ≤ y0 · e
kx +

x
∫

0

x
∫

0

(

a2(x)
4

− b (x)
)

dx2

,

where only the right side is ultimately determined (in the same time it must be

that f (x) > 0, i.e.
a2

4
− b > 0).

Equation (27) (because ε is variable) is actually a nonlinear integral equation
derived from the linear equation (1) and corresponding Riccati equation (6) under
condition (4). Inequalities better than (27) could be obtained if we notice in (27)
– which is a correct equality – that

ε (x) = u2 =

(

y′

y
+

a (x)

2

)2

.

Therefore, we have

(30) y (x) = y0 · e
kx −

x
∫

0

x
∫

0

(

b (x) + a (x) y′

y
+

(

y′

y

)2
)

dx2

.

If we analyze functional of a quadratic function

P2 (y, y′) = P2

(

a, b,
y′

y

)

= P2 (Y ) = b + aY + Y 2; Y =
y′

y
,

it is easily found that it has a minimum for P2 (Y ) = 0, a + 2Y = 0, Y = −
a

2
and

min P2 = P2

(

−
a

2

)

= b −
a2

4
, for

y′

y
= −

a (x)

2
.

However, the integration then gives y = e
−

∫

a (x) dx
, which is the special

solution from the first special case.

This implies that the right side is biggest when we subtract the least, which

occurs for min P2 (Y ) , where Y =
y′

y
, the minimum being equal to b −

a2

4
for the

solution y = C1e
−

1

2

∫

a(x) dx, i.e. for the equation (1) for which (9) is valid as well.
This implies:
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Theorem 6. The supremum of all solutions of the equation (1) is

(31) y (x) ≤ y0 · e
kx −

x
∫

0

x
∫

0

(

b (x) − a2(x)
4

)

dx2

.

It implies that all the other estimations of the solution y (x) which has no
zeroes, derived from the integral equation (30), for all the other possible solutions
y (x) 6= 0 and for all continuous coefficients a (x) and b (x), are bigger than the
above supremum, y (x) .

However, since for the minimum of the functional we get a supremum for the
solution u = 0 i.e., the first special case; i.e., for the pair (a, b) the relation (9) is
valid, we have

y (x) ≤ y0 · e
kx −

x
∫

0

x
∫

0

a′(x)
2

dx2

or in a simpler form

y (x) ≤ y0 · e
kx −

x
∫

0

(a (x) − a (0)) dx
,

or, considering the constant K, we get the least upper limit of all the possible upper
limits for equation (1) determined by the pair (ax), b (x)) :

(32) y (x) ≤ y0 · e

(

y′

0

y0

+ a0

)

x
· e

−

1
2

x
∫

0

a (x) dx
.

Remark. The fourth case. Possible discontinuous coefficients

Let there be the equation

(1.A) A (x) y′′ + a (x) y′ + b (x) y = 0,

equivalent to (1) if

1◦ A (x) is continuously differentiable in [0, x] and

2◦ A (x) has no zeroes in [0, x].

Then there is:

y′′ +
a (x)

A (x)
y′ +

b (x)

A (x)
y = 0

and as an estimation of the solution we have the integral

(29.A) y (x) ≤ y0 · e
kx +

x
∫

0

x
∫

0

(

1
4

a2(x)
A2(x)

−

b(x)
A(x)

)

dx2

.

If A (x) = 0 has solutions x1, x2, . . . , then all these points must be excluded
while iterating and all previous considerations must be repeated in the intervals
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[0, x1] , [x1, x2] , [x2, x3] , . . . at which boundary the coefficients
a

A
and

b

B
become

undetermined and infinite. The first integral

x
∫

0

(

1

4

a2 (x)

A2 (x)
−

b (x)

A (x)

)

dx and the

second integral

x
∫

0

x
∫

0

(

1

4

a2 (x)

A2 (x)
−

b (x)

A (x)

)

dx2 then become improper.

This implies that a huge work remains to be done regarding estimation, ex-
istence and convergence of these and improper integrals of this kind; a work that
most likely could not be contained within a paper because it actually represents
the entire Theory of Special Functions.
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