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ON A PROPERTY OF ENTIRE FUNCTIONS

WITH ALMOST NEGATIVE ZEROS

Slavko Simić

We give a generalization of well-known Valiron-Titchmarsh theorem on
entire functions with negative zeros. Namely, we prove that (−1)p log P (r) ∈
ER[p, p+1], where P (r) denotes the canonical product of an entire function
with genus p and almost negative zeros and ER is the class of extended
regular variation.

1. INTRODUCTION

We begin with some basic definitions from Karamata’s theory of Regular
Variation (cf. [1], [2]).

Definition 1. A positive measurable function f varies regularly with index ρ, i.e.

f ∈ Rρ, if

lim
x→∞

f(λx)

f(x)
= λρ

for each λ > 0 and some real ρ.

Since lim
x→∞

f(λx)/f(x) need not always exist, denote

f∗(λ) := lim sup
x→∞

f(λx)

f(x)
, f∗(λ) := lim inf

x→∞

f(λx)

f(x)
(λ > 0).

Therefore we have

Definition 2 (cf. [1, p. 65]). A positive measurable function f belongs to the class

ER of extended regularly varying functions if

λa ≤ f∗(λ) ≤ f∗(λ) ≤ λb, ∀λ ≥ 1,
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for some constants a, b. More specifically, in this case we write f ∈ ER[a, b].

It is obvious that R ⊂ ER.

The Theory of Regular Variation is very well developed (cf. [1], [2]) and has
many applications in Analysis, Probability Theory, Number Theory, Theory of Dis-
tributions etc. One of the brightest examples of this sort is Valiron-Titchmarsh

Theorem on entire functions of finite order ρ with negative zeros only (cf. [1,
pp. 301–308]). Roughly speaking, it asserts that cρ log P (r) ∈ Rρ if and only if
n(r) ∈ Rρ, where P (z) is the canonical product with negative zeros and n(r) denotes
the number of zeros in the circle |z| ≤ r.

In the case of non-integral order one obtain that cρ =
1

π
sin πρ.

Recall that the canonical product with zeros z1, z2, . . . is

(1) P (z) =
∞∏

n=1

(1 −
z

zn
) exp

( p∑

k=1

(z/zn)k/k

)
,

where p is its genus i. e. the least non-negative integer such that
∑
n
|zn|

−(p+1)

converges.

The Hadamard Factorization Theorem states that an entire function g of
finite order ρ, p ≤ ρ ≤ p + 1, with zeros z1, z2, . . . may be written in the form

g(z) = zmP (z) exp
(
Q(z)

)
,

where m is the order of z = 0 as a zero of g and Q is a polynomial of degree ≤ ρ.

It will be proved here that for the canonical product P with a genus p and
negative zeros, (−1)p log P (r) ∈ ER[p,p+1] without any assumption on the distri-
bution of zeros.

2. RESULTS

If z1, z2, . . . are the zeros of P (z) with genus p ≥ 0, then there exist positive
constants Cn,p such that

|π − arg zn| ≤ Cn,p, n ∈ N.

If lim
n→∞

Cn,p = 0, the zeros are oriented and for this class results similar to Valiron-

Titchmarsh Theorem are obtained by Bowen [3].

Definition 3. The zeros z1, z2, . . . are almost negative if the relation

(2) |π − arg zn| ≤ Cp

holds for some constant Cp, 0 < Cp < π/2 and each n ∈ N.

Hence, almost negative zeros belong to some angle in the left complex half-
plane including the negative part of the real axis.
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Denote by Ap the class of zeros satisfying (2) with Cp =
π

2p + 4
. Then the

following assertion holds.

Theorem A. If the canonical product P (z) is formed by the zeros from the class

Ap and is real on the real axis, then

(−1)p log P (r) ∈ ER[p,p+1].

Proof. Taking the logarithmic derivative in (1) we obtain

(3) P̃ (z) := z
P ′(z)

P (z)
= zp+1

∑

a∈Ap

1

ap(z − a)
.

Hence, for λ > 1 we get

(4) λp+1P̃ (z) − P̃ (λz) = λp+1(λ − 1)zp+2
∑

a∈Ap

1

ap(z − a)(λz − a)
,

and

(5) λpP̃ (z) − P̃ (λz) = λp(λ − 1)zp+1
∑

a∈Ap

1

ap−1(z − a)(λz − a)
.

For a ∈ Ap and n ≤ p + 2, we have <(an) = (−1)nbn with bn ≥ 0. Since

=P̃ (r) = 0, from (3), (4) and (5), after some calculation we obtain

(6) (−1)pP̃ (r) > 0; (−1)p(λp+1P̃ (r)− P̃ (λr)) > 0; (−1)p(λpP̃ (r)− P̃ (λr)) < 0,

for each r > 0.

Hence
(−1)pP̃ (r) ∈ ER[p,p+1].

Now, since P (0) = 1 and P̃ (r) is real and continuous on the positive part of real
axis, by (6) we get

(−1)p log P (λr) = (−1)p

λr∫

0

P̃ (t)
dt

t
= (−1)p

r∫

0

P̃ (λt)
dt

t

≤ (−1)pλp+1

r∫

0

P̃ (t)
dt

t
= (−1)pλp+1 log P (r).

Analogously by the second part of (6), for r > 0 we obtain

(−1)p log P (λr) ≥ (−1)pλp log P (r).
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Hence
(−1)p log P (r) ∈ ER[p,p+1],

and the proof is done. �

Remark 1. The statement of Theorem A is of global nature and allows the use of the
tools of Extended Variation Theory (cf. [1, pp. 61–81]) in the case when the growth of
n(r) is not specified.

Remark 2. Inequalities (6) hold for all λ > 1 and r > 0; hence (6) is stronger result than

the result of the theorem (which is stated in terms of lim inf and lim sup).

Corollary 1. If the canonical product P (z) with genus p is formed by negative

zeros only, then

(−1)pP̃ (r) ∈ ER[p,p+1]; (−1)p log P (r) ∈ ER[p,p+1],

without any assumption on the distribution of zeros.

We illustrate this point by an example.

According to the Hadamard Factorization Theorem, the class A of entire
functions with negative zeros and genus zero is represented by

∞∏

1

(1 + z/ak),

where {ak}
∞

1 is a sequence of positive numbers with
∞∑
1

1/ak < ∞. In particular,

fb(z) :=
∏

k∈N

(1 + z/kb), b > 1,

belongs to the class A. Since in this case

n(r) ∼ r1/b ∈ R1/b (r → ∞),

the Valiron-Titchmarsh Theorem gives log fb(r) ∈ R1/b and

log fb(r) ∼
π

sin(π/b)
r1/b (r → ∞).

Consider now the function fK(z) defined by

fK(z) :=
∏

k∈K

(1 + z/kb),

where K is any subset of N . Since b > 1, we have that

∑

k∈K

1/kb ≤
∑

k∈N

1/kb < ∞.
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Hence fK(z) ∈ A and Corollary 1 states that log fK(r) ∈ ER[0,1] independently of
K. Moreover, Theorem A asserts that for

f∗

K(z) :=
∏

k∈K

(
1 +

z

kbeiφk

)
,

we have
log f∗

K(r) ∈ ER[0,1],

providing that |φk| ≤ π/4, k ∈ K.

Remark 3. The referee posed two interesting questions.

1. In the regularly varying case there is a relation between the asymptotic behavior

of log P (z) and that of the number of zeros n(r) in the circle with radius r. Is it possible

to transfer the main result to obtain also a new result concerning n(r)?

2. Using the technique of the paper, perhaps it is possible to prove not only that

(−1)p log P (r) ∈ ER,

but also that all derivatives of (−1)p log P (r) belong to ER.

The answer to the first question should be negative; from the above example, since
the set of zeros of fK(z) is arbitrary, it is seen that the growth of n(r) does not affect
the statement of Theorem A. Therefore, one cannot expect that the main result could
produce a new result concerning n(r).

The second question is more complex and difficult. Although its assertion formally

is not true (note that for r > 0,
(
log fK(r)

)
′′

< 0, hence /∈ ER), we are able to give just

a partial answer in the simplest case i.e. when all zeros of P (z) are negative.

Proposition 1. If the canonical product P (z) of genus p ≥ 0, have all its zeros

negative, then

1.
(
(−1)p log P (r)

)′
∈ ER[p−1,p]; 2.

(
(−1)p log P (r)

)′′
∈ ER[p−2,p−1], p ≥ 2,

but, (
− log P (r)

)′′
∈ ER[−2,0], p = 0;

(
log P (r)

)′′
∈ ER[−2,0], p = 1.

The part 1 is a consequence of Theorem 1. The part 2 shows irregularities
concerning parameter p.

Proposition 2. Under the conditions of Proposition 1 and for all m > p, we have

that

1.
(
(−1)p+m+1 log P (r)

)(m)
∈ ER[−m,0],

but, for m = p it follows that

2.
(
(−1)p log P (r)

)(p)
∈ ER[0,1].
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Proof. From (3) we obtain that

(7)
(
(−1)p log P (r)

)′
=

∑

a∈A

rp

ap(r + a)
,

where A is a set of positive numbers satisfying
∑

a∈A

1/ap+1 < ∞.

Hence for p ≥ 1,

(
(−1)p log P (r)

)′′
=

∑

a∈A

rp−1 (p − 1)r + ap

ap(r + a)2
,

and, applying the method from the proof of Theorem A, after some calculation we
obtain the assertion from Proposition 1.

To get the proof of Proposition 2, note that for p ≥ 1,

rp

ap(r + a)
= (rp−1/ap + · · · ) +

(−1)p

r + a
,

where the expression in the brackets is a polynomial of the degree p − 1.

Therefore from (7), for m > p we obtain

(
(−1)p+m+1 log P (r)

)(m)
= (m − 1)!

∑

a∈A

1

(r + a)m
,

and for λ > 1,

(
(−1)p+m+1 log P (λr)

)(m)
−

(
(−1)p+m+1 log P (r)

)(m)

= (m − 1)!
∑

a∈A

( 1

(λr + a)m
−

1

(r + a)m

)
< 0,

i.e.
(
(−1)p+m+1 log P (λr)

)(m)
− (1/λm)

(
(−1)p+m+1 log P (r)

)(m)

= (m − 1)!
∑

a∈A

( 1

(λr + a)m
−

1

(λr + λa)m

)
> 0.

Hence the result follows. For m = p, from (7) we get

(
(−1)p log P (r)

)(p)
= (p − 1)!

∑

a∈A

( 1

ap
−

1

(r + a)p

)
,

and the result from Proposition 2, part 2, follows analogously.
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